Topic Review
Monounsaturated Fat
In biochemistry and nutrition, monounsaturated fatty acids (abbreviated MUFAs, or more plainly monounsaturated fats) are fatty acids that have one double bond in the fatty acid chain with all of the remainder carbon atoms being single-bonded. By contrast, polyunsaturated fatty acids (PUFAs) have more than one double bond.
  • 1.6K
  • 30 Oct 2022
Topic Review
Visible-Light-Promoted Carbonylation Reactions
The abundant and inexpensive carbon monoxide (CO) is widely exploited as a C1 source for the synthesis of both fine and bulk chemicals. In this context, photochemical carbonylation reactions have emerged as a powerful tool for the sustainable synthesis of carbonyl-containing compounds (esters, amides, ketones, etc.).
  • 1.6K
  • 11 Aug 2021
Topic Review
Thin Film Superconductors
Thin superconducting films have been a significant part of superconductivity research for more than six decades. They have had a significant impact on the existing consensus on the microscopic and macroscopic nature of the superconducting state. Thin-film superconductors are frequently considered to be Type II superconductors even when they are from Type I materials because of the strong effect of the stray magnetic fields outside the superconductive sample. Thin films can be defined as materials, where one dimension is highly constrained relative to the other two dimensions or a system whose properties are determined by the surface energy. Thin films consist of two main components: the microstructure and the surface morphology. The microstructure refers to the microscopic crystal structure of the thin film. Thin films fabrication has a virtually unlimited ability to synthesise materials with new or improved properties. This means new devices and applications can be realized.
  • 1.6K
  • 06 Jul 2022
Topic Review
Clinoptilolite Characterization and EDS Analysis
Zeolites are materials of biomedical interest, in particular owing to their ability to remove metabolic products such as uremic toxins (i.e., urea, uric acid, creatinine, p-cresol, and indoxul sulfate); they are used for the regeneration of dialysis solutions and as in vivo membranes for artificial kidney. Zeolites have further important applications in the biomedical field, in fact they are used as hemostats (due to their ability to absorb water), antiseptics (when modified with silver or zinc ions), carriers for drugs and genes (adjuvant in vaccines), glucose absorbers, etc. Here, EDS microanalysis in the study of a sample of natural clinoptilolite is reported. 
  • 1.6K
  • 28 Sep 2021
Topic Review
Three Dimensional Printing
The following article introduces technologies that build 3 dimensional (3D) objects by adding layer-upon-layer of material, called also additive manufacturing technologies.  Furthermore most important features supporting the conscious choice of 3D printing methods for applications in micro and nanomanufacturing were covered. The micromanufacturing method covers photopolymerisation based methods such as Stereolithography (SLA), Digital Light Processing (DLP), Liquid Crystal Display – DLP coupled method, Two-Photon Polymerisation (TPP) and Inkjet based methods. Functional photocurable materials, with magnetic, conductive or specific optical applications in the 3D printing processes were also reviewed. 
  • 1.6K
  • 26 Oct 2020
Topic Review
Interfacial Polymerization Techniques for TFC/TFN
Here, we review various novel/modified interfacial polymerization (IP) techniques for the fabrication of polyamide (PA) thin film composite (TFC)/thin film nanocomposite (TFN) membranes in both pressure-driven and osmotically driven separation processes. Although conventional IP technique is the dominant technology for the fabrication of commercial nanofiltration (NF) and reverse osmosis (RO) membranes, it is plagued with issues of low membrane permeability, relatively thick PA layer and susceptibility to fouling, which limit the performance. Over the past decade, we have seen a significant growth in scientific publications related to the novel/modified IP techniques used in fabricating advanced PA-TFC/TFN membranes for various water applications. Novel/modified IP lab-scale studies have consistently, so far, yielded promising results compared to membranes made by conventional IP technique, in terms of better filtration efficiency (increased permeability without compensating solute rejection), improved chemical properties (crosslinking degree), reduced surface roughness and the perfect embedment of nanomaterials within selective layers. Furthermore, several new IP techniques can precisely control the thickness of the PA layer at sub-10 nm and significantly reduce the usage of chemicals.
  • 1.6K
  • 09 Mar 2021
Topic Review
Cellulose Nanomaterials
Cellulose is the most abundant renewable source on Earth. Due to several of their characteristics, such as their renewability, sustainability, and eco-friendliness, nanocellulose-based materials are arousing growing interest from researchers in various fields of study and applications. 
  • 1.6K
  • 20 Dec 2022
Topic Review
Polysiloxane-Based Ionic Polymers
A diverse range of linear polysiloxane-based ionic polymers that are hydrophobic and highly flexible can be obtained by substituting the polymers with varying amounts of ionic centers. The materials can be highly crystalline solids, amorphous soft solids, poly(ionic) liquids or viscous polymer liquids.
  • 1.6K
  • 31 Dec 2020
Topic Review
Contributions of Chromatography to the Science Progress
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human–environment interactions and systems, how these interactions affect our life, and the several societal challenges currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and “foodprint”, among others, the wide range of applications of today’s chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. 
  • 1.6K
  • 02 Sep 2022
Topic Review
Copper Biological Active Complexes
Very few biological active Cu(II) complexes entered in clinical trials as result of poor water solubility and lipophilicity, low stability as well as in vivo inactivation. Their pharmacological and/or oral administration profile can be improved either by physically encapsulation or by conjugation to an organic matrix via a moiety able to coordinate Cu(II). As result, a large variety of species were developed as delivery carriers such as liposomes, synthetic or natural polymers or dendrimers.
  • 1.6K
  • 28 Dec 2020
  • Page
  • of
  • 465
Video Production Service