Topic Review
Chemically Activated Glass-Ionomer Cements as Bioactive Materials
Glass-ionomer cement (GIC) is a long-established restorative dental material with several clinical applications that have remained relevant because of the chemical adhesive bond it forms at the tooth-restoration interface and its fluoride-releasing and recharging properties. It was invented by Wilson and Kent in 1969 and successfully introduced into clinical practice in 1972. Chemically activated GICs, commonly referred to as conventional GICs, typically consist of ion-leachable glasses based on calcium or strontium alumino-fluorosilicate and weak polymeric water-soluble acids of polyacrylic acid (PAA) homopolymer, or acrylic acid, maleic/itaconic acid copolymer. They set by an acid-base reaction, and the setting reaction is initiated by mixing glass powder and polymeric acids. 
  • 864
  • 30 Mar 2023
Topic Review
Crossover Experiment
In chemistry, a crossover experiment is a method used to study the mechanism of a chemical reaction. In a crossover experiment, two similar but distinguishable reactants simultaneously undergo a reaction as part of the same reaction mixture. The products formed will either correspond directly to one of the two reactants (non-crossover products) or will include components of both reactants (crossover products). The aim of a crossover experiment is to determine whether or not a reaction process involves a stage where the components of each reactant have an opportunity to exchange with each other. The results of crossover experiments are often straightforward to analyze, making them one of the most useful and most frequently applied methods of mechanistic study. In organic chemistry, crossover experiments are most often used to distinguish between intramolecular and intermolecular reactions. Inorganic and organometallic chemists rely heavily on crossover experiments, and in particular isotopic labeling experiments, for support or contradiction of proposed mechanisms. When the mechanism being investigated is more complicated than an intra- or intermolecular substitution or rearrangement, crossover experiment design can itself become a challenging question. A well-designed crossover experiment can lead to conclusions about a mechanism that would otherwise be impossible to make. Many mechanistic studies include both crossover experiments and measurements of rate and kinetic isotope effects.
  • 863
  • 28 Oct 2022
Topic Review
Photothermal Therapy Mediated by Nanomaterial
Photothermal therapy (PTT) mediated by nanomaterial has become an attractive tumor treatment method due to its obvious advantages. Among various nanomaterials, melanin-like nanoparticles with nature biocompatibility and photothermal conversion properties have attracted more and more attention. Melanin is a natural biological macromolecule widely distributed in the body and displays many fascinating physicochemical properties such as excellent biocompatibility and prominent photothermal conversion ability. Due to the similar properties, Melanin-like nanoparticles have been extensively studied and become promising candidates for clinical application.
  • 863
  • 29 Jan 2021
Topic Review
Methods of Thermal Treatment of Radioactive Waste
Nuclear power is generated by a small amount of fuel, as related to other non-renewable energy sources. The volume of waste formed in this process is comparably small. Thermal treatment of waste is a term given to any treatment technology that involves high temperatures in the processing of the waste feedstock. All the thermal treatment methods used for normal waste have been applied to radioactive waste.  
  • 863
  • 24 Jan 2022
Topic Review
Nanocomposite materials for Wound Healing
Materials science is a field in which nanotechnology is being greatly explored, due to how much the bulk and surface properties previously mentioned, such as structural tunability, functionalization, and physicochemical stability, etc., are observed to change with diverse synthetization protocols in order to form customized nanostructured materials. Materials properties, such as shape, size, crystal structure, and surface roughness, can be taken advantage of and are currently being applied to practically any area of the biomedical field, such as wound healing and drug delivery around the globe with exceedingly successful results. The use of nanostructured materials in the form of nanoparticles, nanofibers, and any shape given at the nanoscale (1–100 nm), applied towards biotechnological and/or biomedical applications, such as wound healing, treatment of emerging pollutants, and drug delivery, has been exponentially growing over the past few decades.
  • 863
  • 27 May 2021
Topic Review
Ellagic Acid
Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. The proposed mechanism revealed that EA mimics clonidine at the presynaptic release-regulating α2 autoreceptors in hippocampal noradrenergic nerve endings.
  • 863
  • 24 Nov 2021
Topic Review
Targeted Delivery of Exosomes to the Brain
Delivering therapeutics to the central nervous system (CNS) is difficult because of the blood–brain barrier (BBB). Therapeutic delivery across the tight junctions of the BBB can be achieved through various endogenous transportation mechanisms. Receptor-mediated transcytosis (RMT) is one of the most widely investigated and used methods. Drugs can hijack RMT by expressing specific ligands that bind to receptors mediating transcytosis, such as the transferrin receptor (TfR), low-density lipoprotein receptor (LDLR), and insulin receptor (INSR). Cell-penetrating peptides and viral components originating from neurotropic viruses can also be utilized for the efficient BBB crossing of therapeutics. Exosomes, or small extracellular vesicles, have gained attention as natural nanoparticles for treating CNS diseases, owing to their potential for natural BBB crossing and broad surface engineering capability. RMT-mediated transport of exosomes expressing ligands such as LDLR-targeting apolipoprotein B has shown promising results.
  • 863
  • 13 May 2022
Topic Review
“Brick-and-Mortar” Composites Made of 2D Carbon Nanoparticles
Among all biomimetic materials, nacre has drawn great attention from the scientific community, thanks to superior levels of strength and toughness and its brick-and-mortar (B&M) architecture. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. 
  • 862
  • 27 Apr 2022
Topic Review
Transition Metal Oxide Electrode Materials
The rising use of nonrenewable fossil fuels in recent decades has put human existence in grave danger. As a result, it is imperative to design environmentally friendly and cost-effective energy storage devices. Supercapacitors are a promising energy device because of their high power density, outstanding cycle stability, and quick charge/discharge process. However, supercapacitors' energy density is still lower than that of conventional batteries'. Supercapacitors' electrochemical performance is heavily influenced by the electrode materials, as is well-known to everyone.
  • 862
  • 19 Apr 2022
Topic Review
Vancomycin with Muramyl Pentapeptide
Vancomycin and a native muramyl pentapeptide ended with D-alanine (MPP-D-Ala), and vancomycin and a modified muramyl pentapeptide ended with D-serine (MPP-D-Ser) form complexes in a very specific way. This complexes provide a basis for characterizing the type and stability of the connection. The type of experimentally measured and computer-simulated interactions opens the field for discussion on possible modifications to the structure of vancomycin or muramyl pentapeptide to obtain their desired characteristics.
  • 862
  • 07 Feb 2022
  • Page
  • of
  • 465
ScholarVision Creations