Topic Review
Chitosan/Graphene Oxide Composite Films
The healing of wounds is still one of the challenging clinical problems for which an efficient and fast treatment is needed. Therefore, recent studies have created a new generation of wound dressings which can accelerate the wound healing process with minimum side effects. Chitosan, a natural biopolymer, is an attractive candidate for preparing biocompatible dressings. The biodegradability, non-toxicity and antibacterial activity of chitosan have made it a promising biopolymer for treating wounds. Graphene oxide has also been considered by researchers as a non-toxic, inexpensive, and biocompatible material for wound healing applications. This review discusses the potential use of chitosan/graphene oxide composite films and their application in wound dressing and drug delivery systems. 
  • 949
  • 02 Sep 2021
Topic Review
Molecularly Imprinted (Micro)Solid Phase Extraction
Molecularly imprinted polymers (MIPs) are versatile materials that mimic natural antigen–antibody mechanisms and allow molecules/analytes recognition [2,3]. MIPs have been used as selective sorbents for (micro)solid extraction (µ-SPE) procedures leading to molecularly imprinted (micro)solid extraction (MIMSPE), which allows advanced miniaturized sample pre-treatments for green procedures in Analytical Chemistry.
  • 949
  • 24 Nov 2021
Topic Review
Sulfamethoxazole in Water
Sulfamethoxazole (SMX) is a frequently used antibiotic for the treatment of urinary tract, respiratory, and intestinal infections and as a supplement in livestock or fishery farming to boost production.
  • 949
  • 30 Nov 2021
Topic Review
Electric Noise Spectroscopy
Electric noise spectroscopy is a non-destructive and a very sensitive method for studying the dynamic behaviors of the charge carriers and the kinetic processes in several condensed matter systems, with no limitation on operating temperatures. This technique has been extensively used to investigate several perovskite compounds, manganese oxides (La1−xSrxMnO3, La0.7Ba0.3MnO3, and Pr0.7Ca0.3MnO3), and a double perovskite (Sr2FeMoO6), whose properties have recently attracted great attention.
  • 949
  • 22 Jan 2021
Topic Review
Halloysite Nanofluids
Nanofluids obtained from halloysite and de-ionized water (DI) were prepared by using surfactants and changing pH for heat-transfer applications. The halloysite nanotubes (HNTs) nanofluids were studied for several volume fractions (0.5, 1.0, and 1.5 vol%) and temperatures (20, 30, 40, 50, and 60 °C). 
  • 949
  • 20 Feb 2021
Topic Review
Gold Nanoparticles and Their Biomedical Applications
Gold nanoparticles (AuNPs) have the ability to absorb and scatter light, and can convert optical energy into heat using nonradiative electron relaxation dynamics and surface chemistry. Moreover, gold nanoparticles can be used as drug carriers, making them very attractive and versatile nanoparticles. The features of AuNPs that make them particularly attractive in biomedicine are their excellent stability and biocompatibility, ease to functionalize their surfaces, their low toxicity, and their drug transferability. Other features, such as shape and size adaptation, have certainly drawn attention for the use of gold nanoparticles in many fields.
  • 948
  • 19 May 2022
Topic Review
Cold-Sprayed In718-Ni Composite Coating
The cold-spray technique was used to deposit Inconel 718–nickel (1:1) composite coatings on stainless steel substrate. A general full factorial design was adopted to identify the statistically significant operating variables, i.e., impingement angle, erodent size, and feed rate on the coating erosion response. Erodent feed rate, impingement angle, and the interaction between impingement angle and erodent size were identified as the highly significant variables on the erosion rate. Then, a model correlating the identified variables with the erosion rate was derived. The best combination of control variables for minimum erosion loss with respect to erodent feed rate, erodent size, and impingement angle was 2 mg/min, 60 µm, and 90°, respectively.
  • 948
  • 02 Nov 2020
Topic Review
Peroxyacetic Acid Pretreatment in Lignocellulose Biorefinery
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. A considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. 
  • 947
  • 12 Oct 2022
Topic Review
Protein Nanotubes
Nanobiotechnology involves the study of structures found in nature to construct nanodevices for biological and medical applications with the ultimate goal of commercialization. Within a cell most biochemical processes are driven by proteins and associated macromolecular complexes. Evolution has optimized these protein-based nanosystems within living organisms over millions of years. Among these are flagellin and pilin-based systems from bacteria, viral-based capsids, and eukaryotic microtubules and amyloids. While carbon nanotubes (CNTs), and protein/peptide-CNT composites, remain one of the most researched nanosystems due to their electrical and mechanical properties, there are many concerns regarding CNT toxicity and biodegradability. Therefore, proteins have emerged as useful biotemplates for nanomaterials due to their assembly under physiologically relevant conditions and ease of manipulation via protein engineering. 
  • 947
  • 30 Aug 2021
Topic Review
Antimicrobial Properties of Lignocellulosic Materials
Pathogenic microbes are a major source of health and environmental problems, mostly due to their easy proliferation on most surfaces. Currently, new classes of antimicrobial agents are under development to prevent microbial adhesion and biofilm formation. However, they are mostly from synthetic origin and present several disadvantages. The use of natural biopolymers such as cellulose, hemicellulose, and lignin, derived from lignocellulosic materials as antimicrobial agents has a promising potential. Lignocellulosic materials are one of the most abundant natural materials from renewable sources, and they present attractive characteristics, such as low density and biodegradability, are low-cost, high availability, and environmentally friendly.
  • 946
  • 08 Apr 2021
  • Page
  • of
  • 465
Video Production Service