Topic Review
3D Printing in Complex Medical Procedures
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. 
  • 366
  • 18 Mar 2022
Topic Review
Adult Abdominal Tuberculosis Diagnosis
Tuberculosis is a common systemic infection with the bacteria Mycobacterium tuberculosis, which is primarily found in the lungs and causes caseous inflammation in lung tissue and other organs. Tuberculosis is an infectious disease that spreads via the air. Tuberculosis is an endemic disease in developing countries, due to the wide spread of acquired immunodeficiency syndrome (AIDS), it might represent a problem in developed countries, as well. Only around one-fifth of patients diagnosed with abdominal TB have pulmonary disease. 
  • 560
  • 29 Mar 2022
Topic Review
Analytical Methodologies for Determination of Vancomycin
Vancomycin is regarded as the last resort of defense for a wide range of infections due to drug resistance and toxicity. The detection of vancomycin in plasma has always aroused particular concern because the performance of the assay affects the clinical treatment outcome. With the update of technology, bioassay, immunoassay, LC appreared in sequence with respective characteristic. 
  • 380
  • 02 Nov 2022
Topic Review
Angiotensin-Converting Enzyme 2
The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic.
  • 641
  • 24 Sep 2021
Topic Review
Applications of Graphene in Biosensors for Cancer Detection
Biosensors are a very promising tool for the possibility of sensitive, specific, and non-invasive diagnosis for early detection of cancer. Effective, accurate methods of cancer detection and clinical diagnosis are urgently needed. Biosensors are devices that are designed to detect a specific biological analyte by essentially converting a biological entity (i.e., protein, DNA, RNA) into an electrical signal that can be detected and analyzed. The ultimate goal of biosensors is to detect signals specific to each disease and cancer, and recently nanoparticles have been widely used in the design of biosensors. Graphene and its derivatives are nanoparticles with unique properties and have many applications in nanobiosensors.
  • 665
  • 21 Jul 2022
Topic Review
Approach for Molecular Diagnosis of Periprosthetic Joint Infections
Periprosthetic joint infections (PJIs) represent some of the most challenging complications whose incidence will consequently rise in proportion to surgeries. The manifestation and evaluation of physical findings such as acute local inflammation, fever, and wound drainage, may correlate to the presence of PJIs; indeed, these clinical manifestation are of great value in raising the suspicion of PJIs. 
  • 319
  • 23 Aug 2022
Topic Review
Biosensing Technologies for SARS-CoV-2
COVID-19 viral disease is officially global pandemic, currently accounting for the highest number of deaths worldwide. Special screening is extremely important as an effective way to monitor and manage the pandemic before reaching herb immunity through effective vaccination against SARS-CoV-2. A rapid population control task for COVID-19 has been documented using innovative methods in biosensor development. Biosensors are selected as promising detection devices with enormous potential as point-of-care (POC) tools to confirm the SARS-CoV-2 infection. Timely testing also helps to effectively allocate medical resources and save time for frontline medical staff. Hence, simple, rapid, cost-effective, and accessible detection techniques as POC diagnostics for large-scale screening and field testing of SARS-CoV-2 infection is important and should urgently be expedited to control the rapid and contagious spread of COVID-19. 
  • 580
  • 03 Jun 2021
Topic Review
Biotechnology for COVID-19 Diagnosis
To date, six human coronaviruses have been identified: α-coronaviruses (HCoVs-NL63, HCoVs-229E), β-coronaviruses (HCoVs-OC43, HCoVs-HKU1), severe acute respiratory syndrome-CoV (SARS-CoV), and Middle East respiratory syndrome-CoV (MERS-CoV). After the SARS-CoV-1 epidemic, the world is living a new threat to human health since December 2019—the SARS-CoV-2 or the COVID-19 pandemic. The emergence of the novel coronavirus is associated with an atypical pneumonia that has led to 90,176,569 infections and 1,936,617 deaths worldwide, as of 10 January 2021. Structurally, SARS-CoV-2 is an enveloped RNA(Ribonucleic acid) virus comprising a spike protein (S), a hemagglutinin-esterase dimer (HE), a membrane glycoprotein (M), an envelope protein (E), and a nucleocapsid protein (N). It has been demonstrated that the mechanism of the viral infection requires angiotensin-converting enzyme 2 (ACE2) binding to the protein S with high affinity. Highly expressed in the endothelial cells of the cardiovascular system and kidneys, this human receptor is used by the virus as an entry to invade target cells. Currently, immunoassays are the most popular diagnostic tools available in the market and used in medical structures. Basically, these methods use antibodies as bioreceptors targeting capsid proteins or whole viruses. In serological testing, capsid proteins are used as viral antigens to bind the immunoglobulins generated by the patient against the pathogen. Antibodies are usually obtained from animal immunization with N, S, or E protein or from the blood samples of patients who are infected [14]. In addition to the commercialized ELISA kits and rapid tests, several research reports have described novel immunoassays and immunosensors for coronavirus detection. We discuss in this part the principle of these methods as well as the most important results.
  • 812
  • 21 Apr 2021
Topic Review
Bispecific Antibody-Based Immune-Cell Engagers in Cancer Immunotherapy
Cancer is the second leading cause of death worldwide after cardiovascular diseases. One of the most promising targeted therapies for cancer treatment is antibody therapy. It has a superior targeting ability for antigens that are expressed on cancer cells, which results in prominent antitumor activity and lower toxicity, compared with that of chemotherapeutic agents. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers.
  • 792
  • 06 Jan 2023
Topic Review
Breast Cancer Subtype-Specific miRNAs
Breast cancer is one of the most common malignancies, with multiple subtypes, based on clinical parameters and molecular profiling. In addition to disease staging, the expression status of hormone receptors’ estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in tumors define the prognosis of the cancer and treatment options. Hence, clinically, breast cancers are defined as ER+/PR+, HER+, or triple-negative (i.e., those lacking expression of these three receptors). This classification system allows for the administration of endocrine therapies in the hormone expressing subtypes. Additionally, breast cancer subtyping is observed via transcriptome profiling, which has identified four major subtypes (luminal A, luminal B, HER2, and basal-like). The ER+/PR+ breast cancers are predominately luminal A/B and TNBCs are predominately basal-like. Clearly gene expression defines breast cancer; it is then not surprising that the expression of miRNAs also displays subtype-specificity.
  • 755
  • 25 Mar 2022
  • Page
  • of
  • 6