Topic Review
Effect of the Mediator System on Laccase Catalysis
Laccase belongs to the superfamily of multicopper oxidases and has been widely investigated in recent decades. Due to its mild and efficient oxidation of substrates, laccase has been successfully applied in organic catalytic synthesis, the degradation of harmful substances, and other green catalytic fields. Adding a mediator not only effectively improves the reaction efficiency of laccase but also expands the scope of the substrate.
  • 243
  • 08 May 2023
Topic Review
Mitochondria-Targeting Probes
Sulfane sulfurs, which include hydropersulfides (RSSH), hydrogen polysulfides (H2Sn, n > 1), and polysulfides (RSnR, n > 2), play important roles in cellular redox biology and are closely linked to hydrogen sulfide (H2S) signaling. While most studies on sulfane sulfur detection have focused on sulfane sulfurs in the whole cell, increasing the recognition of the effects of reactive sulfur species on the functions of various subcellular organelles has emerged, such as mitochondria. This has driven a need for organelle-targeted detection methods.
  • 436
  • 08 Mar 2023
Topic Review
Biomedical Application of Carbon Dots
Carbon dots (CDs), which are a new category of carbon nanoparticles that consist of quasi-spherical, discrete fluorescent carbon nanomaterials with a diameter of less than 10 nm, have multiple advantages over semiconductor quantum dots (QDs), including high water solubility, low cost, excellent biocompatibility, chemically inertness, highly tunable photoluminescence and electrochemical luminescence. Because of their unique properties, carbon quantum dots (CQDs) have acquired significance in nano-chemistry, which has resulted in the discovery of CDD applications, especially in biomedical applications.            
  • 556
  • 01 Mar 2023
Topic Review
P-Glycoprotein Transporter Modelling
ATP-binding cassette (ABC) transporters play a critical role in both drug bioavailability and toxicity, and with the discovery of the P-glycoprotein (P-gp), this became even more evident, as it plays an important role in preventing intracellular accumulation of toxic compounds. Intensive studies have been conducted to find new therapeutic molecules to reverse the phenomenon of multidrug resistance (MDR), that research has found is often associated with overexpression of P-gp, the most extensively studied drug efflux transporter; in MDR, therapeutic drugs are prevented from reaching their targets due to active efflux from the cell. The development of P-gp inhibitors is recognized as a good way to reverse this type of MDR, which has been the subject of extensive studies over the past few decades. Despite the progress made, no effective P-gp inhibitors to reverse multidrug resistance are yet on the market, mainly because of their toxic effects. Computational studies can accelerate this process, and in silico models such as quantitative structure-activity relationship (QSAR) models that predict the activity of compounds associated with P-gp (or analogous transporters) are of great value in the early stages of drug development, along with molecular modelling methods, which provide a way to explain how these molecules interact with the ABC transporter. 
  • 324
  • 21 Feb 2023
Topic Review
Product-Based Learning
The traditional teaching-learning process in higher education employs strategies that position students as recipients of information transmitted by the teacher, which is conceptualized as knowledge. However, the reality in which we live, including new generational groups’ characteristics, requires implementing training solutions that meet individuals' needs in the development of skills or know-how. Thus, deploying suitable solutions to society through a framework that forms individuals capable of continuously seeking knowledge, creating and innovating, is crucial. The "Reproduction of an Environment of Innovation in the Classroom" (RAIS) is a product-based learning and evaluation strategy where the student is actively involved in constructing and generating knowledge. It allows developing the programmatic competencies in engineering courses to attain a feasible product. The RAIS strategy has been applied in Physical chemistry for Chemical Engineers and Industrial Chemistry courses. Students successfully formulated a product using the know-how attained in each course. In addition, this strategy increased motivation compared to other traditional courses, developing the ability to deploy and find solutions in work environments with multidisciplinary groups.  
  • 2.3K
  • 13 Jan 2023
Topic Review
Mechanisms of α-Syn Aggregation In Vitro
The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson’s disease (PD), multiple system atrophy, Alzheimer’s disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, chemical and biophysical methodologies that provided insights on Alpha-synuclein aggregation that would help to investigate other less-known aggregation-prone peptides and proteins were presented.
  • 577
  • 03 Jan 2023
Topic Review
Nanomaterials to Enhance Polymerase Chain Reaction
Polymerase Chain Reaction (PCR) is one of the most common technologies used to produce millions of copies of targeted nucleic acid in vitro and has become an indispensable technique in molecular biology. However, it suffers from low efficiency and specificity problems, false positive results, and so on. Although many conditions can be optimized to increase PCR yield, such as the magnesium ion concentration, the DNA polymerases, the number of cycles, and so on, they are not all-purpose and the optimization can be case dependent. Nano-sized materials offer a possible solution to improve both the quality and productivity of PCR. Nanoparticles (NPs) have attracted significant attention and gradually penetrated the field of life sciences because of their unique chemical and physical properties, such as their large surface area and small size effect, which have greatly promoted developments in life science and technology. Additionally, PCR technology assisted by NPs (NanoPCR) such as gold NPs (Au NPs), quantum dots (QDs), and carbon nanotubes (CNTs), etc., have been developed to significantly improve the specificity, efficiency, and sensitivity of PCR and to accelerate the PCR reaction process. 
  • 373
  • 28 Dec 2022
Topic Review
Voltammetric Techniques in Assessing the Food Quality
Generally, the detection of analytes or molecules present in food materials interferes with the chromophore moieties in the food. Some of the common problems with the use of conventional methods in determining food quality are low sensitivity to redox changes, turbidity, low spectrum resolution, and scattering issues related to the sample. Moreover, the miniaturization and portability of detectors are the biggest disadvantages of conventional methods. Therefore, there is a huge demand for quick, robust, selective, and easy methods, such as voltammetric methods, for determining the food’s quality. They exhibit a higher level of selectivity for the redox reactions, and a faster response. They are very simple, economical, and their portability with unlimited miniaturization has made them an ideal and popular choice for assessing the food quality compared with other analytical methods.
  • 320
  • 23 Dec 2022
Topic Review
Biological Properties of Anthocyanin Pigments in Blood Oranges
Anthocyanins are natural pigments that give a red, purple, and blue color to many plant, flower, fruit, and vegetable species. Their presence within the genus Citrus was first reported in 1916, and it is well-known that the red color of the flesh and rind of blood (red or pigmented) oranges (Citrus sinensis L. Osbeck) is due to the presence of anthocyanins. They are also present in the young shoots, flowers, and peel of lemon (Citrus limon (L.) Burm. f.), citron (Citrus medica L.), and other citrus species. 
  • 770
  • 22 Dec 2022
Topic Review
The Peculiar Properties of Human mitoNEET
The outer mitochondrial membrane (OMM) protein mitoNEET, also known as CDGSH Fe-S domain-containing protein-1 (CISD1), is composed of 108 amino acids, encompassing a N-terminal transmembrane helix (residues 14–32) that anchors the protein to the OMM, and a cytosolic portion (residues 33–108) that has been widely investigated through X-ray crystallography, showing a unique, highly conserved folding.
  • 329
  • 05 Dec 2022
  • Page
  • of
  • 20