Topic Review
Liquid Phase Infiltration of Block Copolymers
Novel materials with defined composition and structures at the nanoscale are increasingly desired in several research fields spanning a wide range of applications. Self-assembling materials such as block copolymers (BCPs), in combination with liquid phase infiltration (LPI) processes, represent an ideal strategy for the synthesis of inorganic materials into even more complex and functional features.
  • 323
  • 26 Oct 2022
Topic Review
Low Molecular Weight Chitosan
Chitosan is a biopolymer with high added value, and its properties are related to its molecular weight. Thus, high molecular weight values provide low solubility of chitosan, presenting limitations in its use. Based on this, several studies have developed different hydrolysis methods to reduce the molecular weight of chitosan.
  • 2.3K
  • 13 Aug 2021
Topic Review
Magnetic Polymers for Microfluidic Sorting
Magnetophoresis offers many advantages for manipulating magnetic targets in microsystems. The integration of micro-flux concentrators and micro-magnets allows achieving large field gradients and therefore large reachable magnetic forces. However, the associated fabrication techniques are often complex and costly, and besides, they put specific constraints on the geometries. Magnetic composite polymers provide a promising alternative in terms of simplicity and fabrication costs, and they open new perspectives for the microstructuring, design, and integration of magnetic functions.
  • 953
  • 30 Jul 2021
Topic Review
Magnetorheological Elastomers
Magnetorheological elastomers (MREs) are magneto-sensitive smart materials, widely used in various applications, i.e., construction, automotive, electrics, electronics, medical, minimally invasive surgery, and robotics. Such a wide field of applications is due to their superior properties, including morphological, dynamic mechanical, magnetorheological, thermal, friction and wear, and complex torsional properties.
  • 1.3K
  • 28 Dec 2020
Biography
Mahmoud A. Hussein
M.A. Hussein is a professor of Polymer Chemistry, Polymer Chemistry Lab, Chemistry Department, Faculty of Science, Assiut University (AU), Egypt. He obtained his PhD in Organic Polymer Synthesis from Assiut University, Egypt in 2007. He got a position at Chemistry Department, King Abdulaziz University (KAU), Jeddah, Saudi Arabia from 2010 – till now. He got a postdoctoral position in the Unive
  • 324
  • 13 Mar 2023
Topic Review
Material Reactions, Degradation and Applications of Polyvinylidene Fluoride
Polyvinylidene fluoride (PVDF), the chemical formula is (C2H2F2)n. Its basic building blocks are therefore carbon, hydrogen, and fluorine. These three elements can form several crystalline chain conformations. Conformations are defined by polar and nonpolar phases. Four phases are most commonly found in the literature: α-, β-, γ-, and δ-. 
  • 564
  • 17 Oct 2022
Topic Review
Meat Packaging
The term ‘packaging’ refers to the technological intervention aimed at the protection of food from a variety of factors, which provokes the product detriment. Packaging is considered as one of the most interesting technological aspects and a constantly evolving issue in food production. 
  • 6.5K
  • 21 Jan 2021
Topic Review
Mechanical Recycling of Thermoplastics
Plastic materials have gathered attention recently due to their omnipresence in the global economy. The transition towards a circular economy is the only way to prevent the environment from landfilling and incineration.
  • 311
  • 12 Oct 2023
Topic Review
Mechanism of Self-Healing Hydrogels
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported.
  • 1.0K
  • 09 Nov 2022
Topic Review
Mechanisms of Temperature-Responsive Polymer Brush Coatings
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). Despite progress in the development of such interesting materials, there are still some issues that need to be resolved, such as biocompatibility, high efficiency, selectivity of the action, stability, long-term and multiple-use, and the temperature of the transition close to physiological temperatures (appropriate transition temperature). The mechanisms of their temperature-induced reactions are one of the most crucial elements that affect the characteristics of temperature-sensitive grafted brush coatings. The TRPBCs exhibit the response to temperature governed by different mechanisms attributed to intermolecular interactions of the macromolecular chains between themselves and with the environment. The mechanism responsible for the temperature-dependent properties of polymer brushes is strongly dependent on the chemical nature of the macromolecular chains.
  • 506
  • 20 Oct 2022
  • Page
  • of
  • 46
Video Production Service