Topic Review
Andhaka
In Hindu mythology, Andhaka (Sanskrit: अन्धक, IAST: andhaka, lit. he who darkens) often refer to a malevolent asura who is killed by Shiva for trying to abduct Parvati. His story finds mention in various Hindu texts, including Matsya Purana, Kurma Purana, Linga Purana and Shiva Purana. He is believed to have thousand heads, two thousand eyes, arms and feet.
  • 4.3K
  • 17 Oct 2022
Topic Review
Soyuz T-15
Soyuz T-15 (Russian: Союз T-15, Union T-15) was a crewed mission to the Mir and Salyut 7 space stations and was part of the Soyuz programme. It marked the final flight of the Soyuz-T spacecraft, the third generation Soyuz spacecraft, which had been in service for seven years from 1979 to 1986. This mission marked the first time that a spacecraft visited, and docked with, two space stations in the same mission.
  • 518
  • 17 Oct 2022
Topic Review
Stellar Astronomy
Astronomy (from grc ἀστρονομία (Script error: No such module "Ancient Greek".) 'science that studies the laws of the stars') is a natural science that studies celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets. Relevant phenomena include supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, astronomy studies everything that originates beyond Earth's atmosphere. Cosmology is a branch of astronomy that studies the universe as a whole. Astronomy is one of the oldest natural sciences. The early civilizations in recorded history made methodical observations of the night sky. These include the Babylonians, Greeks, Indians, Egyptians, Chinese, Maya, and many ancient indigenous peoples of the Americas. In the past, astronomy included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars. Nowadays, professional astronomy is often said to be the same as astrophysics. Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results. Astronomy is one of the few sciences in which amateurs play an active role. This is especially true for the discovery and observation of transient events. Amateur astronomers have helped with many important discoveries, such as finding new comets.
  • 1.0K
  • 17 Oct 2022
Topic Review
Biological Photovoltaics
Biological photovoltaics (BPV) is an energy-generating technology which uses oxygenic photoautotrophic organisms, or fractions thereof, to harvest light energy and produce electrical power. Biological photovoltaic devices are a type of biological electrochemical system, or microbial fuel cell, and are sometimes also called photo-microbial fuel cells or “living solar cells”. In a biological photovoltaic system, electrons generated by photolysis of water are transferred to an anode. A relatively high-potential reaction takes place at the cathode, and the resulting potential difference drives current through an external circuit to do useful work. It is hoped that using a living organism (which is capable of self-assembly and self-repair) as the light harvesting material, will make biological photovoltaics a cost-effective alternative to synthetic light-energy-transduction technologies such as silicon-based photovoltaics.
  • 595
  • 17 Oct 2022
Topic Review
Solarisation
Pseudo-solarisation (or pseudo-solarization) is a phenomenon in photography in which the image recorded on a negative or on a photographic print is wholly or partially reversed in tone. Dark areas appear light or light areas appear dark. The term is synonymous with the Sabatier effect when referring to negatives. Solarisation and pseudo-solarisation are quite distinct effects. In short, the mechanism is due to halogen ions released within the halide grain by exposure diffusing to the grain surface in amounts sufficient to destroy the latent image.
  • 856
  • 17 Oct 2022
Topic Review
North Magnetic Pole
The North Magnetic Pole is a wandering point on the surface of Earth's Northern Hemisphere at which the planet's magnetic field points vertically downwards (in other words, if a magnetic compass needle is allowed to rotate about a horizontal axis, it will point straight down). There is only one location where this occurs, near (but distinct from) the Geographic North Pole and the Geomagnetic North Pole. The North Magnetic Pole moves over time according to magnetic changes and flux lobe elongation in the Earth's outer core. In 2001, it was determined by the Geological Survey of Canada to lie west of Ellesmere Island in northern Canada at 81°18′N 110°48′W / 81.3°N 110.8°W / 81.3; -110.8 (Magnetic North Pole 2001). It was situated at 83°06′N 117°48′W / 83.1°N 117.8°W / 83.1; -117.8 (Magnetic North Pole 2005 est) in 2005. In 2009, while still situated within the Canadian Arctic at 84°54′N 131°00′W / 84.9°N 131°W / 84.9; -131 (Magnetic North Pole 2009), it was moving toward Russia at between 55 and 60 km (34 and 37 mi) per year. As of 2019, the pole is projected to have moved beyond the Canadian Arctic to 86°26′52.8″N 175°20′45.06″E / 86.448°N 175.34585°E / 86.448; 175.34585 (Magnetic North Pole 2019 est). Its southern hemisphere counterpart is the South Magnetic Pole. Since Earth's magnetic field is not exactly symmetrical, the North and South Magnetic Poles are not antipodal, meaning that a straight line drawn from one to the other does not pass through the geometric center of Earth. Earth's North and South Magnetic Poles are also known as magnetic dip poles, with reference to the vertical "dip" of the magnetic field lines at those points.
  • 885
  • 17 Oct 2022
Topic Review
Luminiferous Aether
Luminiferous aether or ether ("luminiferous", meaning "light-bearing") was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light. The aether hypothesis was the topic of considerable debate throughout its history, as it required the existence of an invisible and infinite material with no interaction with physical objects. As the nature of light was explored, especially in the 19th century, the physical qualities required of an aether became increasingly contradictory. By the late 1800s, the existence of the aether was being questioned, although there was no physical theory to replace it. The negative outcome of the Michelson–Morley experiment (1887) suggested that the aether did not exist, a finding that was confirmed in subsequent experiments through the 1920s. This led to considerable theoretical work to explain the propagation of light without an aether. A major breakthrough was the theory of relativity, which could explain why the experiment failed to see aether, but was more broadly interpreted to suggest that it was not needed. The Michelson-Morley experiment, along with the blackbody radiator and photoelectric effect, was a key experiment in the development of modern physics, which includes both relativity and quantum theory, the latter of which explains the particle-like nature of light.
  • 3.7K
  • 17 Oct 2022
Topic Review
Sakurai's Bell Inequality
The intention of a Bell inequality is to serve as a test of local realism or local hidden variable theories as against quantum mechanics, applying Bell's theorem, which shows them to be incompatible. Not all the Bell's inequalities that appear in the literature are in fact fit for this purpose. The one discussed here holds only for a very limited class of local hidden variable theories and has never been used in practical experiments. It is, however, discussed by John Bell in his "Bertlmann's socks" paper (Bell, 1981), where it is referred to as the "Wigner–d'Espagnat inequality" (d'Espagnat, 1979; Wigner, 1970). It is also variously attributed to Bohm (1951?) and Belinfante (1973). Note that the inequality is not really applicable either to electrons or photons, since it builds in no probabilistic properties in the measurement process. Much more realistic hidden variable theories can be devised, modelling spin (or polarisation, in optical Bell tests) as a vector and allowing for the fact that not all emitted particles will be detected.
  • 688
  • 17 Oct 2022
Topic Review
History of Nanotechnology
The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.
  • 2.2K
  • 17 Oct 2022
Topic Review
List of Photonics Equations
This article summarizes equations in the theory of photonics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
  • 240
  • 17 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations