Topic Review
List of Unnumbered Minor Planets: 2001 S–Y
This is a partial list of unnumbered minor planets for principal designations assigned between 16 September 2001 and 31 December 2001 (S–Z).
  • 233
  • 29 Nov 2022
Topic Review
Channelling
Channelling is the process that constrains the path of a charged particle in a crystalline solid. Many physical phenomena can occur when a charged particle is incident upon a solid target, e.g., elastic scattering, inelastic energy-loss processes, secondary-electron emission, electromagnetic radiation, nuclear reactions, etc. All of these processes have cross sections which depend on the impact parameters involved in collisions with individual target atoms. When the target material is homogeneous and isotropic, the impact-parameter distribution is independent of the orientation of the momentum of the particle and interaction processes are also orientation-independent. When the target material is monocrystalline, the yields of physical processes are very strongly dependent on the orientation of the momentum of the particle relative to the crystalline axes or planes. Or in other words, the stopping power of the particle is much lower in certain directions than others. This effect is commonly called the "channelling" effect. It is related to other orientation-dependent effects, such as particle diffraction. These relationships will be discussed in detail later.
  • 444
  • 29 Nov 2022
Topic Review
Scanning Transmission Electron Microscopy
A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused to a fine spot (with the typical spot size 0.05 – 0.2 nm) which is then scanned over the sample in a raster illumination system constructed so that the sample is illuminated at each point with the beam parallel to the optical axis. The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and spectroscopic data. A typical STEM is a conventional transmission electron microscope equipped with additional scanning coils, detectors, and necessary circuitry, which allows it to switch between operating as a STEM, or a CTEM; however, dedicated STEMs are also manufactured. High-resolution scanning transmission electron microscopes require exceptionally stable room environments. In order to obtain atomic resolution images in STEM, the level of vibration, temperature fluctuations, electromagnetic waves, and acoustic waves must be limited in the room housing the microscope.
  • 1.0K
  • 29 Nov 2022
Topic Review
Asterism
An asterism is an observed pattern or group of stars in the sky. Asterisms can be any identified pattern or group of stars, and therefore are a more general concept than the formally defined 88 constellations. Constellations are based on asterisms, but unlike asterisms, constellations outline and today completely divide the sky and all its celestial objects into regions around their central asterisms. For example, the asterism known as the Big Dipper comprises the seven brightest stars in the constellation Ursa Major. Another is the asterism of the Southern Cross, within the constellation of Crux. Asterisms range from simple shapes of just a few stars to more complex collections of many stars covering large portions of the sky. The stars themselves may be bright naked-eye objects or fainter, even telescopic, but they are generally all of a similar brightness to each other. The larger brighter asterisms are useful for people who are familiarizing themselves with the night sky. The patterns of stars seen in asterisms are not necessarily a product of any physical association between the stars, but are rather the result of the particular perspectives of their observations. For example the Summer Triangle is a purely observational physically unrelated group of stars, but the stars of Orion's Belt are all members of the Orion OB1 association and five of the seven stars of the Big Dipper are members of the Ursa Major Moving Group. Physical associations, such as the Hyades or Pleiades, can be asterisms in their own right and part of other asterism at the same time.
  • 1.2K
  • 29 Nov 2022
Topic Review
Sessile Drop Technique
The sessile drop technique is a method used for the characterization of solid surface energies, and in some cases, aspects of liquid surface energies. The main premise of the method is that by placing a droplet of liquid with a known surface energy, the shape of the drop, specifically the contact angle, and the known surface energy of the liquid are the parameters which can be used to calculate the surface energy of the solid sample. The liquid used for such experiments is referred to as the probe liquid, and the use of several different probe liquids is required.
  • 629
  • 29 Nov 2022
Topic Review
Mid-Infrared External Cavity Quantum Cascade Lasers
External cavity quantum cascade lasers (ECQCLs) in the mid-infrared band have a series of unique spectral properties, which can be widely used in spectroscopy, gas detection, protein detection, medical diagnosis, free space optical communication, and so on, especially wide tuning range, the tuning range up to hundreds of wavenumbers; therefore, ECQCLs show great applications potential in many fields. 
  • 511
  • 29 Nov 2022
Topic Review
Jpsi Meson
The J/ψ (J/psi) meson /ˈdʒeɪ ˈsaɪ ˈmiːzɒn/ or psion is a subatomic particle, a flavor-neutral meson consisting of a charm quark and a charm antiquark. Mesons formed by a bound state of a charm quark and a charm anti-quark are generally known as "charmonium". The J/ψ is the most common form of charmonium, due to its spin of 1 and its low rest mass. The J/ψ has a rest mass of 3.0969 GeV/c2, just above that of the ηc (2.9836 GeV/c2), and a mean lifetime of 7.2×10−21 s. This lifetime was about a thousand times longer than expected. Its discovery was made independently by two research groups, one at the Stanford Linear Accelerator Center, headed by Burton Richter, and one at the Brookhaven National Laboratory, headed by Samuel Ting of MIT. They discovered they had actually found the same particle, and both announced their discoveries on 11 November 1974. The importance of this discovery is highlighted by the fact that the subsequent, rapid changes in high-energy physics at the time have become collectively known as the "November Revolution". Richter and Ting were awarded the 1976 Nobel Prize in Physics.
  • 508
  • 29 Nov 2022
Topic Review
VSOP (Planets)
The semi-analytic planetary theory VSOP (French: Variations Séculaires des Orbites Planétaires) is a mathematical model describing long-term changes (secular variation) in the orbits of the planets Mercury to Neptune. The earliest modern scientific model considered only the gravitational attraction between the Sun and each planet, with the resulting orbits being unvarying Keplerian ellipses. In reality, all the planets exert slight forces on each other, causing slow changes in the shape and orientation of these ellipses. Increasingly complex analytical models have been made of these deviations, as well as efficient and accurate numerical approximation methods. VSOP was developed and is maintained (updated with the latest data) by the scientists at the Bureau des Longitudes in Paris. The first version, VSOP82, computed only the orbital elements at any moment. An updated version, VSOP87, computed the positions of the planets directly at any moment, as well as their orbital elements with improved accuracy. At present, the difference between computational predictions and observations is so small that the model seems essentially complete in its physical principles. Such hypothetical deviations are often referred to as post-Keplerian effects.
  • 459
  • 28 Nov 2022
Topic Review
Chemical Reaction Rate
The reaction rate for a reactant or product in a particular reaction is defined as the amount of the chemical that is formed or removed (in moles or mass units) per unit time per unit volume. Knowledge of these rates is essential in, among other disciplines, chemical engineering and environmental engineering. Chemical kinetics is the part of physical chemistry which studies reaction rates.
  • 580
  • 28 Nov 2022
Topic Review
Orion Service Module
The Orion service module is the service module component of the Orion spacecraft, serving as its primary power and propulsion component until it is discarded at the end of each mission. In January 2013, NASA announced that the European Space Agency (ESA) will contribute the service module for Artemis 1, replacing the previous design. Based on ESA's Automated Transfer Vehicle (ATV), the new design is also known as the European service module (ESM). The service module supports the crew module from launch through separation prior to reentry. It provides in-space propulsion capability for orbital transfer, attitude control, and high altitude ascent aborts. It provides the water and oxygen needed for a habitable environment, generates and stores electrical power, and maintains the temperature of the vehicle's systems and components. This module can also transport unpressurized cargo and scientific payloads.
  • 820
  • 28 Nov 2022
  • Page
  • of
  • 130
Video Production Service