Topic Review
Self-Assembled III-V Semiconductor Quantum Dots
A fundamental understanding of the growth of semiconductors is essential for the optimization of quantum dot-based optoelectronic devices. Droplet epitaxy has proven to be the successful versatile growth method for instance growing quantum dots with a small fine structure splitting for quantum information technology. Precise control and tuning of the quantum dots for various applications is only possible through a detailed understanding of the growth mechanism at the atomic level, which creates the need for atomic-scale structural and composition characterization. We present an overview of the results of detailed structural and composition analysis by cross-sectional scanning tunneling microscopy and atom probe tomography of quantum dots grown by self-assembled droplet epitaxy where we focus mainly on strain-free GaAs/AlGaAs and strained InAs/InP QDs.
  • 1.3K
  • 19 Jan 2021
Topic Review
Spins in Semiconductor Nanoparticles
- Spin-dependent phenomena in semiconductors are analyzed starting from a theory of the dynamic nuclear polarization via numerous insightful findings in the realm of characterization and control through the nuclear spin polarization in nanoparticles and their aggregates into microparticles as potential contrast agents for magnetic resonance imaging (MRI) applications.  - Electron spin-dependent process of the photosensitized generation of singlet oxygen in porous silicon (Si) for photodynamic therapy application and design of Si-based nanoparticles with electron spin centers for MRI contrasting for cancer theranostics are discussed.  
  • 1.2K
  • 12 Jan 2021
Topic Review
Continuous-Wave THz Imaging
Terahertz (THz) spectroscopy and imaging technology have seen significant developments in the fields of biology, medical diagnosis, food safety, and nondestructive testing. Label-free diagnosis of malignant tumours has been obtained and also achieved significant development in THz biomedical imaging.
  • 1.2K
  • 07 Jan 2021
Topic Review
Boron-Doped Diamond
Boron-doped diamond (BDD) acts as an excellent p-type conductive material for high-temperature, high-power and radiation-proof photoelectronic devices with its large band gap at room temperature (5.47 eV) and high thermal conductivity.
  • 2.6K
  • 06 Jan 2021
Topic Review
Nonlinear Damping Identification
In recent decades, nonlinear damping identification (NDI) in structural dynamics has attracted wide research interests and intensive studies. Different NDI strategies, from conventional to more advanced, have been developed for a variety of structural types. With apparent advantages over classical linear methods, these strategies are able to quantify the nonlinear damping characteristics, providing powerful tools for the analysis and design of complex engineering structures.
  • 980
  • 05 Jan 2021
Topic Review
Density Profile of Liquid-Metal-Vapor Interface
Several metals and many alloys are in liquid form around room temperature, e.g., mercury (Hg, −38.8 °C), francium (Fr, 8.0 °C), cesium (Sc, 28.5 °C), gallium (Ga, 29.8 °C), the eutectic mercury-based alloys, and the eutectic gallium-based alloys. If eutectic, liquid metal alloys can be in liquid form that has been used in practical applications, replacing mercury. Liquid metals have high thermal and electric conductivity and have been used to conduct heat and electricity between non-metallic and metallic surfaces. They have also been used as thermal interface materials between coolers and processors. Concerning these metals, our understanding of the liquid-vapor interface is critical for proper applications. This entry summarizes the basic features of the density distribution of liquid metal-vapor interface, which are advanced based on pseudo-potential representation and numerical simulation at the University of Chicago.
  • 1.3K
  • 30 Dec 2020
Topic Review
International Course-based Undergraduate Research Experiences
Course-based Undergraduate Research Experiences (CUREs) are a proven methodology for transforming short-term study abroad to yield higher impact and quality student outcomes, especially as they relate to teaching environmental sustainability.
  • 703
  • 30 Dec 2020
Topic Review
Wavefront shaping concepts in OCT
Optical coherence tomography (OCT) enables three-dimensional imaging with resolution on the micrometer scale. The technique relies on the time-of-flight gated detection of light scattered from a sample and has received enormous interest in applications as versatile as non-destructive testing, metrology and non-invasive medical diagnostics. However, in strongly scattering media such as biological tissue, the penetration depth and imaging resolution are limited. Combining OCT imaging with wavefront shaping approaches significantly leverages the capabilities of the technique by controlling the scattered light field through manipulation of the field incident on the sample.
  • 891
  • 24 Dec 2020
Topic Review
MEMS Acoustic Emission Sensors
Micro-electro-mechanical-systems (MEMS) acoustic emission (AE) sensors are designed to detect active defects in materials with the transduction mechanisms of piezoresistivity, capacitance or piezoelectricity. The majority of MEMS AE sensors are designed as resonators to improve the signal-to-noise ratio. The fundamental design variables of MEMS AE sensors include resonant frequency, bandwidth/quality factor and sensitivity. Micromachining methods have the flexibility to tune the sensor frequency to a particular range, which is important, as the frequency of AE signal depends on defect modes, constitutive properties and structural composition.
  • 1.9K
  • 22 Dec 2020
Topic Review
GaN-Based LEDs: Modeling and Simulation
Light-emitting diodes (LEDs) based on Gallium Nitride (GaN) have been revolutionizing various applications in lighting, displays, biotechnology, and other fields. Many theoretical models have been developed for GaN-LED simulation, analysis, and design optimization, including carrier transport models, quantum well recombination models, and light extraction models. The overview below is a strongly abbreviated version of Ref. [1].
  • 1.5K
  • 17 Dec 2020
  • Page
  • of
  • 131
ScholarVision Creations