Topic Review
Cold Atmospheric Pressure Plasma Technology
Cold atmospheric pressure plasma (CAPP) technology has received substantial attention due to its valuable properties including operational simplicity, low running cost, and environmental friendliness. Several different gases (air, nitrogen, helium, argon) and techniques (corona discharge, dielectric barrier discharge, plasma jet) can be used to generate plasma at atmospheric pressure and low temperature. Plasma treatment is routinely used in materials science to modify the surface properties (e.g., wettability, chemical composition, adhesion) of a wide range of materials (e.g., polymers, textiles, metals, glasses). Moreover, CAPP seems to be a powerful tool for the inactivation of various pathogens (e.g., bacteria, fungi, viruses) in the food industry (e.g., food and packing material decontamination, shelf life extension), agriculture (e.g., disinfection of seeds, fertilizer, water, soil) and medicine (e.g., sterilization of medical equipment, implants). Plasma medicine also holds great promise for direct therapeutic treatments in dentistry (tooth bleaching), dermatology (atopic eczema, wound healing) and oncology (melanoma, glioblastoma).
  • 2.1K
  • 10 Jun 2021
Topic Review
Exoplanetology
Exoplanetology, or exoplanetary science, is an integrated field of astronomical science dedicated to the search for and study of exoplanets (extrasolar planets). It employs an interdisciplinary approach which includes astrobiology, astrophysics, astronomy, astrochemistry, astrogeology, geochemistry, and planetary science.
  • 2.0K
  • 09 Nov 2022
Topic Review Peer Reviewed
Foundations of Quantum Mechanics
Quantum mechanics is a mathematical formalism that models the dynamics of physical objects. It deals with the elementary constituents of matter (atoms, subatomic and elementary particles) and of radiation. It is very accurate in predicting observable physical phenomena, but has many puzzling properties. The foundations of quantum mechanics are a domain in which physics and philosophy concur in attempting to find a fundamental physical theory that explains the puzzling features of quantum mechanics, while remaining consistent with its mathematical formalism. Several theories have been proposed for different interpretations of quantum mechanics. However, there is no consensus regarding any of these theories.
  • 2.0K
  • 07 Jun 2022
Topic Review
N1 (Rocket)
The N1/L3 (from Ракета-носитель Raketa-nositel', "Carrier Rocket"; Cyrillic: Н1) was a super heavy-lift launch vehicle intended to deliver payloads beyond low Earth orbit. The N1 was the Soviet counterpart to the US Saturn V and was intended to enable crewed travel to the Moon and beyond, with studies beginning as early as 1959. Its first stage, Block A, remains the most powerful rocket stage ever flown. However, all four first stages flown failed mid-flight because a lack of static test firings meant that plumbing issues and other adverse characteristics with the large cluster of thirty engines and its complex fuel and oxidizer feeder system were not revealed earlier in development. The N1-L3 version was designed to compete with the United States Apollo program to land a person on the Moon, using a similar lunar orbit rendezvous method. The basic N1 launch vehicle had three stages, which were to carry the L3 lunar payload into low Earth orbit with two cosmonauts. The L3 contained one stage for trans-lunar injection; another stage used for mid-course corrections, lunar orbit insertion, and the first part of the descent to the lunar surface; a single-pilot LK Lander spacecraft; and a two-pilot Soyuz 7K-LOK lunar orbital spacecraft for return to Earth. The N1-L3 was underfunded and rushed, starting development in October 1965, almost four years after the Saturn V. The project was badly derailed by the death of its chief designer Sergei Korolev in 1966. Each of the four attempts to launch an N1 failed, with the second attempt resulting in the vehicle crashing back onto its launch pad shortly after liftoff. The N1 program was suspended in 1974, and officially canceled in 1976. All details of the Soviet crewed lunar programs were kept secret until the USSR was nearing collapse in 1989.
  • 2.0K
  • 30 Nov 2022
Topic Review
Solar Power
Solar power is the conversion of renewable energy from sunlight into electricity, either directly using photovoltaics (PV), indirectly using concentrated solar power, or a combination. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine. Photovoltaics were initially solely used as a source of electricity for small and medium-sized applications, from the calculator powered by a single solar cell to remote homes powered by an off-grid rooftop PV system. Commercial concentrated solar power plants were first developed in the 1980s. Since then, as the cost of solar electricity has fallen, grid-connected solar PV systems have grown more or less exponentially. Millions of installations and gigawatt-scale photovoltaic power stations have been and are being built. Solar PV has rapidly become a viable low-carbon technology, and as of 2020, provides the cheapest source of electricity in history. As of 2021, solar generates 4% of the world's electricity, compared to 1% in 2015 when the Paris Agreement to limit climate change was signed. Along with onshore wind, the cheapest levelised cost of electricity is utility-scale solar. The International Energy Agency said in 2021 that under its "Net Zero by 2050" scenario solar power would contribute about 20% of worldwide energy consumption, and solar would be the world's largest source of electricity.
  • 2.0K
  • 20 Oct 2022
Topic Review
Mechanical Properties of BCC-Structured High-Entropy Alloys
A new metallurgical strategy was introduced to develop advanced materials with outstanding performance—high-entropy alloys (HEAs). Today, HEAs contain five or more multiple principle metallic elements in equal or near-equal atomic percentages. HEAs’ four core effects—high configurational entropy, sluggish diffusion, severe lattice distortion, and the cock-tail effect—are mainly responsible for their various physical and mechanical properties. HEAs present promising properties, such as high strength and fracture toughness at room temperature and high temperatures and have excellent wear resistance, and corrosion resistance, along with high-temperature oxidation.
  • 2.0K
  • 28 Mar 2022
Topic Review
Rainbows in Culture
The rainbow, a natural phenomenon noted for its design and its place in the sky, has been a favorite component of art and religion throughout history.
  • 2.0K
  • 14 Oct 2022
Topic Review
Asymmetric Conductivity in Heavy-Fermion Metals
We consider the time reversal T and particle-antiparticle C symmetries that, being most fundamental, can be violated at microscopic level by a weak interaction. The notable example here is from condensed matter, where strongly correlated Fermi systems like HF metals and high-Tc superconductors (or HF compounds) exhibit C and T symmetries violation due to the so-called non-Fermi liquid (NFL) behavior rather than to microscopic inter-particle interaction. When a HF compound is near the topological fermion condensation quantum phase transition (FCQPT), it exhibits the NFL properties, so that the C symmetry breaks down, making the differential tunneling conductivity to be an asymmetric function of the bias voltage V. This asymmetry does not take place in normal metals, where Landau Fermi liquid (LFL) theory holds. Under the application of magnetic field, a HF compound transits to the LFL state, and σ(V) becomes symmetric function of V. These findings are in good agreement with experimental observations. We suggest that the same topological FCQPT defines the baryon asymmetry in the Universe. Thus, the most fundamental features of the nature are defined by its topological and symmetry properties.
  • 2.0K
  • 29 Apr 2021
Topic Review
History of Nanotechnology
The history of nanotechnology traces the development of the concepts and experimental work falling under the broad category of nanotechnology. Although nanotechnology is a relatively recent development in scientific research, the development of its central concepts happened over a longer period of time. The emergence of nanotechnology in the 1980s was caused by the convergence of experimental advances such as the invention of the scanning tunneling microscope in 1981 and the discovery of fullerenes in 1985, with the elucidation and popularization of a conceptual framework for the goals of nanotechnology beginning with the 1986 publication of the book Engines of Creation. The field was subject to growing public awareness and controversy in the early 2000s, with prominent debates about both its potential implications as well as the feasibility of the applications envisioned by advocates of molecular nanotechnology, and with governments moving to promote and fund research into nanotechnology. The early 2000s also saw the beginnings of commercial applications of nanotechnology, although these were limited to bulk applications of nanomaterials rather than the transformative applications envisioned by the field.
  • 2.0K
  • 17 Oct 2022
Topic Review
Parity
In quantum mechanics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection): It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions. A matrix representation of P (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotation, which has a determinant equal to 1. In a two-dimensional plane, a simultaneous flip of all coordinates in sign is not a parity transformation; it is the same as a 180° rotation. In quantum mechanics, wave functions that are unchanged by a parity transformation are described as even functions, while those that change sign under a parity transformation are odd functions.
  • 2.0K
  • 10 Nov 2022
  • Page
  • of
  • 130
Video Production Service