Topic Review
Mooncake
A mooncake (simplified Chinese: 月饼; traditional Chinese: 月餅; pinyin: yuè bǐng; Jyutping: jyut6 beng2; Yale: yuht béng) is a Chinese bakery product traditionally eaten during the Mid-Autumn Festival (中秋節). The festival is for lunar appreciation and moon watching, when mooncakes are regarded as an indispensable delicacy. Mooncakes are offered between friends or on family gatherings while celebrating the festival. The Mid-Autumn Festival is one of the four most important Chinese festivals. Typical mooncakes are round pastries, measuring about 10 cm in diameter and 3–4 cm thick, and are commonly eaten in the Southern Chinese regions of Guangdong, Guangxi, Hong Kong and Macau. A rich thick filling usually made from red bean or lotus seed paste is surrounded by a thin (2–3 mm) crust and may contain yolks from salted duck eggs. Mooncakes are usually eaten in small wedges accompanied by tea. Today, it is customary for businessmen and families to present them to their clients or relatives as presents, helping to fuel a demand for high-end mooncakes. Due to China's influence, mooncakes and Mid-Autumn Festival are also enjoyed and celebrated in other parts of Asia. Mooncakes have also appeared in western countries as a form of delicacy.
  • 945
  • 22 Nov 2022
Topic Review
Triple-Alpha Process
The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon.
  • 1.9K
  • 22 Nov 2022
Topic Review
History of Solar System Formation and Evolution Hypotheses
The history of scientific thought about the Formation and evolution of the Solar System begins with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704.
  • 2.7K
  • 22 Nov 2022
Topic Review
Simulation Argument (Coding Planck Units)
Coding Planck units for deep universe (Programmer God) Simulation Hypothesis models The deep universe simulation hypothesis or simulation argument is the argument that the universe in its entirety, down to the smallest detail, could be an artificial simulation, such as a computer simulation. A deep universe simulation begins with the big bang and is programmed by an external intelligence (external to the universe), this intelligence by definition a Programmer God in the creator of the universe context. In Big Bang cosmology, the Planck epoch or Planck era is the earliest stage of the Big Bang, where cosmic time was equal to Planck time. Thus for a deep universe simulation, Planck time can be used as the reference for the simulation clock-rate, with the simulation operating at or below the Planck scale, and with the Planck units as (top-level) candidates for the base (mass, length, time, charge) units.
  • 478
  • 22 Nov 2022
Topic Review
Negawatt Power
Negawatt power is a theoretical unit of power representing an amount of electrical power (measured in watts) saved. The energy saved is a direct result of energy conservation or increased energy efficiency. The term was coined by the chief scientist of the Rocky Mountain Institute and environmentalist Amory Lovins in 1985, within the article, "Saving Gigabucks with Negawatts," where he argued that utility customers don’t want kilowatt-hours of electricity; they want energy services such as hot showers, cold beer, lit rooms, and spinning shafts, which can come more cheaply if electricity is used more efficiently. Lovins felt an international behavioral change was necessary in order to decrease countries' dependence on excessive amounts of energy. The concept of a negawatt could influence a behavioral change in consumers by encouraging them to think about the energy that they spend. A negawatt market can be thought of as a secondary market, in which electricity is allocated from one consumer to another consumer within the energy market. In this market, negawatts could be treated as a commodity. Commodities have the ability to be traded across time and space, which would allow negawatts to be incorporated in the international trading system. Roughly 10% of all U.S. electrical generating capacity is in place to meet the last 1% of demand and there is where the immediate efficiency opportunity exists. On March 15, 2011, the Federal Energy Regulatory Commission (FERC), the agency that regulates the U.S. electrical grid, approved a rule establishing the approach to compensation for demand response resources intended to benefit customers and help improve the operation and competitiveness of organized wholesale energy markets. This means that negawatts produced by reducing electrical use can demand the same market prices as real megawatts of generated electricity. The incentives for a negawatt market include receiving money, reduction of national energy dependency, and the local electricity deregulation within certain nations or states. As for the cost incentive, those who produce negawatts or simply conserve energy can earn money by selling the saved energy. The negawatt market could help nations or states obtain a deregulated electricity system by creating another market to purchase electricity from. The negawatt market also has two main drawbacks. Currently, there is no way to precisely measure the amount of energy saved in negawatts, and electricity providers may not want customers to use less energy due to the loss of profit.
  • 7.4K
  • 22 Nov 2022
Topic Review
Void Coefficient
In nuclear engineering, the void coefficient (more properly called void coefficient of reactivity) is a number that can be used to estimate how much the reactivity of a nuclear reactor changes as voids (typically steam bubbles) form in the reactor moderator or coolant. Net reactivity in a reactor is the sum total of all these contributions, of which the void coefficient is but one. Reactors in which either the moderator or the coolant is a liquid typically will have a void coefficient value that is either negative (if the reactor is under-moderated) or positive (if the reactor is over-moderated). Reactors in which neither the moderator nor the coolant is a liquid (e.g., a graphite-moderated, gas-cooled reactor) will have a void coefficient value equal to zero. It is unclear how the definition of 'void' coefficient applies to reactors in which the moderator/coolant is neither liquid nor gas (supercritical water reactor).
  • 2.4K
  • 22 Nov 2022
Topic Review
Allan Hills 84001
Allan Hills 84001 (ALH84001) is a fragment of a Martian meteorite that was found in the Allan Hills in Antarctica on December 27, 1984, by a team of American meteorite hunters from the ANSMET project. Like other members of the shergottite–nakhlite–chassignite (SNC) group of meteorites, ALH84001 is thought to have originated on Mars. However, it does not fit into any of the previously discovered SNC groups. Its mass upon discovery was 1.93 kilograms (4.3 lb). In 1996, a group of scientists found evidence of microscopic fossils of bacteria in the meteorite, suggesting that these organisms also originated on Mars. The claims immediately made headlines worldwide, culminating in then-U.S. president Bill Clinton giving a speech about the potential discovery. These claims were controversial from the beginning, and the wider scientific community ultimately rejected the hypothesis once all the unusual features in the meteorite had been explained without requiring life to be present. Despite there being no convincing evidence of Martian life, the initial paper and the enormous scientific and public attention caused by it are considered turning points in the history of the developing science of astrobiology.
  • 716
  • 22 Nov 2022
Topic Review
Beta Function
In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as and, because of the underlying renormalization group, it has no explicit dependence on μ, so it only depends on μ implicitly through g. This dependence on the energy scale thus specified is known as the running of the coupling parameter, a fundamental feature of scale-dependence in quantum field theory, and its explicit computation is achievable through a variety of mathematical techniques.
  • 507
  • 22 Nov 2022
Topic Review
Gent (Hyperelastic Model)
The Gent hyperelastic material model is a phenomenological model of rubber elasticity that is based on the concept of limiting chain extensibility. In this model, the strain energy density function is designed such that it has a singularity when the first invariant of the left Cauchy-Green deformation tensor reaches a limiting value [math]\displaystyle{ I_m }[/math]. The strain energy density function for the Gent model is where [math]\displaystyle{ \mu }[/math] is the shear modulus and [math]\displaystyle{ J_m = I_m -3 }[/math]. In the limit where [math]\displaystyle{ I_m \rightarrow \infty }[/math], the Gent model reduces to the Neo-Hookean solid model. This can be seen by expressing the Gent model in the form A Taylor series expansion of [math]\displaystyle{ \ln\left[1 - (I_1-3)x\right] }[/math] around [math]\displaystyle{ x = 0 }[/math] and taking the limit as [math]\displaystyle{ x\rightarrow 0 }[/math] leads to which is the expression for the strain energy density of a Neo-Hookean solid. Several compressible versions of the Gent model have been designed. One such model has the form (the below strain energy function yields a non zero hydrostatic stress at no deformation, refer https://link.springer.com/article/10.1007/s10659-005-4408-x for compressible Gent models). where [math]\displaystyle{ J = \det(\boldsymbol{F}) }[/math], [math]\displaystyle{ \kappa }[/math] is the bulk modulus, and [math]\displaystyle{ \boldsymbol{F} }[/math] is the deformation gradient.
  • 971
  • 21 Nov 2022
Topic Review
SpaceX Mars Transportation Infrastructure
Elon Musk and SpaceX have proposed the development of Mars transportation infrastructure in order to facilitate the eventual colonization of Mars. The mission architecture includes fully reusable launch vehicles, human-rated spacecraft, on-orbit propellant tankers, rapid-turnaround launch/landing mounts, and local production of rocket fuel on Mars via in situ resource utilization (ISRU). SpaceX's aspirational goal since 2017 has been to land the first humans on Mars by 2024. A key element of the infrastructure is planned to be the SpaceX Starship, a fully reusable space vehicle under development since 2018. To achieve a large payload, the spacecraft would first enter Earth orbit, where it is expected to be refueled before it departs to Mars. After landing on Mars, the spacecraft would be loaded with locally-produced propellants to return to Earth. The expected payload for the Starship/Super Heavy is to inject between 100–150 tonnes (220,000–330,000 lb) to Mars. SpaceX intends to concentrate its resources on the transportation part of the Mars colonization project, including the design of a propellant plant based on the Sabatier process that will be deployed on Mars to synthesize methane and liquid oxygen as rocket propellants from the local supply of atmospheric carbon dioxide and ground-accessible water ice. However, Musk has advocated since 2016 a larger set of long-term Mars settlement objectives, going far beyond what SpaceX projects to build; any successful colonization would ultimately involve many more economic actors—whether individuals, companies, or governments—to facilitate the growth of the human presence on Mars over many decades.
  • 3.2K
  • 21 Nov 2022
  • Page
  • of
  • 118
Video Production Service