Topic Review
White–Juday Warp-Field Interferometer
The White–Juday warp-field interferometer is an experiment designed to detect a microscopic instance of a warping of spacetime. If such a warp is detected, it is hoped that more research into creating an Alcubierre warp bubble will be inspired. A research team led by Harold "Sonny" White in collaboration with Dr. Richard Juday at the NASA Johnson Space Center and Dakota State University are conducting experiments, but results so far have been inconclusive.
  • 2.6K
  • 24 Nov 2022
Topic Review
Holomovement
The holomovement brings together the holistic principle of "undivided wholeness" with the idea that everything is in a state of process or becoming (David Bohm calls it the "universal flux"). In this interpretation of physics wholeness is not considered static, but as a dynamic interconnected process. The concept is presented most fully in Wholeness and the Implicate Order, published in 1980.
  • 2.6K
  • 06 Oct 2022
Topic Review
Lagrangian Point
In celestial mechanics, the Lagrangian points (/ləˈɡrɑːndʒiən/ also Lagrange points, L-points, or libration points) are the points near two large bodies in orbit where a smaller object will maintain its position relative to the large orbiting bodies. At other locations, a small object would go into its own orbit around one of the large bodies, but at the Lagrangian points the gravitational forces of the two large bodies, the centripetal force of orbital motion, and (for certain points) the Coriolis acceleration all match up in a way that cause the small object to maintain a stable or nearly stable position relative to the large bodies. There are five such points, labeled L1 to L5, all in the orbital plane of the two large bodies, for each given combination of two orbital bodies. For instance, there are five Lagrangian points L1 to L5 for the Sun–Earth system, and in a similar way there are five different Lagrangian points for the Earth–Moon system. L1, L2, and L3 are on the line through the centers of the two large bodies, while L4 and L5 each act as the third vertex of an equilateral triangle formed with the centers of the two large bodies. L4 and L5 are stable, which implies that objects can orbit around them in a rotating coordinate system tied to the two large bodies. Several planets have trojan satellites near their L4 and L5 points with respect to the Sun. Jupiter has more than a million of these trojans. Artificial satellites have been placed at L1 and L2 with respect to the Sun and Earth, and with respect to the Earth and the Moon. The Lagrangian points have been proposed for uses in space exploration.
  • 2.6K
  • 17 Nov 2022
Topic Review
Ultrasensitive Magnetic Field Sensors
One of the cutting-edge topics today is the use of magnetic field sensors for applications such as magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-care devices. Types of magnetic field sensors include direct current superconducting quantum interference devices, search coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling magnetoresistance, optically pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry, and those based on the behavior of nitrogen-vacancy centers in the atomic lattice of diamond. Current developments of magnetometry in biological diagnostics are revised in review paper DOI: 10.3390/s20061569.
  • 2.6K
  • 11 Jun 2021
Topic Review
Green Star
In astronomy, a green star is a white or blueish star that appears greenish in some viewing conditions (see § Psychology below). Under typical viewing conditions, there are no greenish stars, because the color of a star is more or less given by a black-body spectrum. However, there are a few stars that appear greenish to some observers, due to the viewing conditions, for example the optical 'illusion' that a red object can make nearby objects look greenish (and vice versa). Some multiple star systems, such as Antares, have a bright reddish star where this contrast makes other stars in the system seem greenish.
  • 2.5K
  • 21 Nov 2022
Topic Review
Gabor-Domain Optical Coherence Microscopy
Gabor-domain optical coherence microscopy (GDOCM) is a high transverse resolution variant of spectral domain optical coherence tomography (SD-OCT). It was proposed to break the cellular resolution limit of optical coherence tomography (OCT). GDOCM achieves invariant transverse and axial resolutions of 2 micron in 3D by fusing together multiple volumetric images that are acquired employing a liquid lens to dynamically refocus at different depths inside the sample with no moving parts.
  • 2.5K
  • 29 Oct 2020
Topic Review
High Entropy Alloys
High-entropy alloys (HEAs) are alloys that are formed by mixing equal or relatively large proportions of (usually) five or more elements. Prior to the synthesis of these substances, typical metal alloys comprised one or two major components with smaller amounts of other elements. For example, additional elements can be added to iron to improve its properties, thereby creating an iron based alloy, but typically in fairly low proportions, such as the proportions of carbon, manganese, and the like in various steels. Hence, high entropy alloys are a novel class of materials. The term “high-entropy alloys” was coined because the entropy increase of mixing is substantially higher when there is a larger number of elements in the mix, and their proportions are more nearly equal. These alloys are currently the focus of significant attention in materials science and engineering because they have potentially desirable properties. Furthermore, research indicates that some HEAs have considerably better strength-to-weight ratios, with a higher degree of fracture resistance, tensile strength, as well as corrosion and oxidation resistance than conventional alloys. Although HEAs have been studied since the 1980s, research substantially accelerated in the 2010s.
  • 2.5K
  • 01 Dec 2022
Topic Review
Mode-locking
Mode-locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example in modern refractive surgery. The basis of the technique is to induce a fixed-phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be 'phase-locked' or 'mode-locked'.
  • 2.5K
  • 03 Nov 2022
Topic Review
Boron-Doped Diamond
Boron-doped diamond (BDD) acts as an excellent p-type conductive material for high-temperature, high-power and radiation-proof photoelectronic devices with its large band gap at room temperature (5.47 eV) and high thermal conductivity.
  • 2.5K
  • 06 Jan 2021
Topic Review
Wake
In fluid dynamics, a wake may either be: 1. the region of recirculating flow immediately behind a moving or stationary blunt body, caused by viscosity, which may be accompanied by flow separation and turbulence, or 2. the wave pattern on the water surface downstream of an object in a flow, or produced by a moving object (e.g. a ship), caused by density differences of the fluids above and below the free surface and gravity (or surface tension).
  • 2.4K
  • 08 Nov 2022
  • Page
  • of
  • 118
Video Production Service