Topic Review
Tetrapod
Tetrapods (/ˈtɛtrəˌpɒdz/; from grc τετρα- (tetra-) 'four', and πούς (poús) 'foot') are four-limbed vertebrate animals constituting the superclass Tetrapoda (/tɛˈtrɒpədə/). It includes extant and extinct amphibians, reptiles (including dinosaurs and therefore birds), and synapsids (including mammals). Tetrapods evolved from a group of animals known as the Tetrapodomorpha which, in turn, evolved from ancient lobe-finned (sarcopterygian) fish around 390 million years ago in the middle Devonian period; their forms were transitional between lobe-finned fishes and the four-limbed tetrapods. Limbed vertebrates (tetrapods in the broad sense of the word) are first known from Middle Devonian trackways, and body fossils became common near the end of the Late Devonian but these were all aquatic. The first crown-tetrapods (last common ancestors of extant tetrapods capable of terrestrial locomotion) appeared by the very early Carboniferous, 350 million years ago. The specific aquatic ancestors of the tetrapods and the process by which they colonized Earth's land after emerging from water remains unclear. The change from a body plan for breathing and navigating in water to a body plan enabling the animal to move on land is one of the most profound evolutionary changes known. Tetrapods have numerous anatomical and physiological features that are distinct from their aquatic ancestors. These include the structure of the head for feeding and breathing, limb girdles and digits for locomotion, eyes for seeing, ears for hearing, and the heart and lungs for gas circulation and exchange outside water. The first tetrapods (stem) or "fishapods" were primarily aquatic. Modern amphibians, which evolved from earlier groups, are generally semiaquatic; the first stage of their lives is as fish-like tadpoles, and later stages are partly terrestrial and partly aquatic. However, most tetrapod species today are amniotes, most of which are terrestrial tetrapods whose branch evolved from earlier tetrapods early in the Late Carboniferous. The key innovation in amniotes over amphibians is the amnion, which enables the eggs to retain their aqueous contents on land, rather than needing to stay in water. (Some amniotes later evolved internal fertilization, although many aquatic species outside the tetrapod tree had evolved such before the tetrapods appeared, e.g. Materpiscis.) Some tetrapods, such as snakes and caecilians, have lost some or all of their limbs through further speciation and evolution; some have only concealed vestigial bones as a remnant of the limbs of their distant ancestors. Others returned to being amphibious or otherwise living partially or fully aquatic lives, the first during the Carboniferous period, others as recently as the Cenozoic. One group of amniotes diverged into the reptiles, which includes lepidosaurs, dinosaurs (which includes birds), crocodilians, turtles, and extinct relatives; while another group of amniotes diverged into the mammals and their extinct relatives. Amniotes include the tetrapods that further evolved for flight—such as birds from among the dinosaurs, pterosaurs from the archosaurs, and bats from among the mammals.
  • 8.3K
  • 04 Nov 2022
Topic Review
Tetraoctylammonium
Alkylammonium salts have been used extensively to study the structure and function of potassium channels. Here, we use the long-chain, hydrophobic tetraoctylammonium (TOA+) to shed light on the structure of the inactivated state of KcsA, a tetrameric prokaryotic potassium channel. By the combined use of a thermal denaturation assay and the analysis of homo-Förster resonance energy transfer in a mutant channel containing a single tryptophan (W67) per subunit, we found that TOA+ binds the channel cavity with high affinity, either with the inner gate open or closed. Moreover, bound TOA+ induces a decrease in the affinity for K+ in the two characteristic K+ binding events to the channel selectivity filter at pH 7.0, when the channel inner gate is in the closed conformation. This is similar to that observed in the absence of TOA+ upon acidic-pH-induced channel inactivation. Therefore, this suggests that TOA+ binding by itself causes inactivation at pH 7.0 when the inner gate is closed. Furthermore, in apparent agreement with such conclusion, the presence of bound TOA+ in the pH 4.0 samples has only modest effects on the affinity of the two binding events for K+, likely because the channel is already inactivated. Finally, we also observed that TOA+ bound at the cavity, allosterically modifies the conformation of the pore helices, leading to longer W67-W67 intersubunit distances at any K+ concentration and both at pH 7.0 and pH 4.0. The changes in the pore helix conformation, along with the decreased affinity for K+ at pH 7.0 caused by TOA+, seen in both homo-FRET and thermal denaturation experiments, are very similar to those effects caused by inactivation at pH 4.0.
  • 488
  • 30 Apr 2021
Topic Review
Tetranychus urticae in Northern Africa
In North Africa, Tetranychus urticae Koch, 1836 represents one of the most destructive generalists among mite herbivores. Unfortunately, it is a source of important annual casualties in crop production. It is a phytophagous mite that can feed on hundreds of host plants and produces significant damage. The control of Tetranychus urticae in North Africa has been principally based on acaricide sprays. However, new alternative methods have shown effective results, such as artificial ultraviolet-B, natural enemies, and the introduction of new genetic methods.
  • 748
  • 30 Mar 2022
Topic Review
Tetrahydrofuran Biodegradation
Tetrahydrofuran (THF) is widely used as a precursor for polymer syntheses and a versatile solvent in industries. THF is an environmental hazard and carcinogenic to humans. We characterized the THF degradation potential of a number of THF-degrading bacteria reported before and a new isolated filamentous fungus Pseudallescheria boydii ZM01. Two different microbial THF degradation pathways have been proposed here. In addition, The initial key metabolic intermediate 2-hydroxytetrahydrofuran was detected and identified by gas chromatography (GC) analyses for the first time during the THF degradation process.
  • 1.1K
  • 10 Nov 2020
Topic Review
Tetrahydrocurcumin-Related Neuropathic Protection
Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). The benefits of THC may be associated with various mechanisms, including antinociceptive, anti-inflammatory, Ca2+-accumulation-inhibitive, TNF-α suppression, neuroprotective, and antioxidant activities.
  • 451
  • 15 May 2023
Topic Review
Tetracycline Resistance in Acid Bacterial Species
By comparing phenotypes with genotypes based on genome-wide annotations, five tetracycline resistance genes, tet(M), tet(W/N/W), tet(L), tet(S), and tet(45), were detected in LAB. Multiple LAB strains without tetracycline resistance genes were found to be resistant to tetracycline at the currently recommended cutoff values. 
  • 639
  • 24 Nov 2021
Biography
Tetiana Starodub
Tetiana Starodub, Ph.D. (Political Sciences), Senior Researcher (born 4 October 1979), is an Ukraine scientist, Associate Professor of International Relations Department, Kyiv Academy for the Humanities, Associate professor of political analytics and forecasting Department of National Academy of Public Administration under the Office of the President of Ukraine. Author of notable scientific arti
  • 748
  • 02 Dec 2022
Topic Review
TET2 Gene
Tet methylcytosine dioxygenase 2: The TET2 gene provides instructions for making a protein whose function is unknown. 
  • 455
  • 25 Dec 2020
Topic Review
Testosterone and DHEA and Immune Response
Androgens are steroids that modulate various processes in the body, ranging from reproduction, metabolism, and even immune response. The main androgens are testosterone, dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). These steroids modulate the development and function of immune response cells. Androgens are generally attributed to immunosuppressive effects; however, this is not always the case. Variations in the concentrations of these hormones induce differences in the innate, humoral, and cell-mediated immune response, which is concentration dependent. The androgens at the highest concentration in the organism that bind to the androgen receptor (AR) are DHEA and testosterone. 
  • 977
  • 15 Dec 2022
Topic Review
Testis-Determining Factor
An Error has occurred retrieving Wikidata item for infobox Testis-determining factor (TDF), also known as sex-determining region Y (SRY) protein, is a DNA-binding protein (also known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in therian mammals (placental mammals and marsupials). SRY is an intronless sex-determining gene on the Y chromosome. Mutations in this gene lead to a range of disorders of sex development (DSD) with varying effects on an individual's phenotype and genotype. TDF is a member of the SOX (SRY-like box) gene family of DNA-binding proteins. When complexed with the SF1 protein, TDF acts as a transcription factor that causes upregulation of other transcription factors, most importantly SOX9. Its expression causes the development of primary sex cords, which later develop into seminiferous tubules. These cords form in the central part of the yet-undifferentiated gonad, turning it into a testis. The now-induced Leydig cells of the testis then start secreting testosterone, while the Sertoli cells produce anti-Müllerian hormone. SRY gene effects normally take place 6–8 weeks after fetus formation which inhibits the female anatomical structural growth in males. It also works towards developing the dominant male characteristics.
  • 1.6K
  • 25 Oct 2022
  • Page
  • of
  • 1815
ScholarVision Creations