Topic Review
Betacoronaviruses
In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002–2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019–2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we briefly review the application of genomics and bioinformatics in the molecular epidemiology of pathogenic betacoronaviruses.
  • 1.4K
  • 01 Apr 2021
Topic Review
Bcl-2 Family Evolutionary Conservation
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology (BH) motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms.
  • 1.4K
  • 22 Jun 2021
Topic Review
Functions of Circular RNAs
Circular RNAs (circRNAs) are a distinctive class of regulatory non-coding RNAs characterised by the presence of covalently closed ends. They are evolutionary conserved molecules, and although detected in different tissues, circRNAs resulted specifically enriched in the nervous system, where they might play an important role in neuronal specification and activity.  Notably, deregulation of circRNAs expression has been linked with various neurological disorders. Little is known about circRNA mode of action, the few species characterized have been shown to act as molecular decoy for microRNAs (miRNAs) or RNA binding proteins (RBPs), to control transcription of their host genes and, although classify as ncRNAs, some of them hold the capacity to direct synthesis of short peptides/proteins.    
  • 1.4K
  • 30 Jul 2020
Topic Review
The Leafless Vanilla Species
The pantropical genus Vanilla is a member of the Orchidaceae family. It originated in America and differentiated in America, Africa, and Asia. About 132 species of Vanilla have now been accepted since the discovery of the genus. Within the Vanilla genus, leaflessness has appeared at least three independent times, in Africa, Asia, and America as an adaptation to drought conditions. The South-West Indian Ocean (SWIO) region is home to seven leafless species. Chloroplast markers failed to differentiate species within this recent SWIO clade. Morphological traits used for description are very similar between species and do not provide reliable identification. Leafless Vanilla species from the SWIO islands are thus an excellent model for understanding the evolution of orchids. For their conservation, and to confirm the identity of these leafless species, an integrated approach with classical taxonomy using a large number of samples, intense fieldwork on biology and ecology, and molecular studies using variable markers is necessary.
  • 1.4K
  • 14 Dec 2020
Topic Review Peer Reviewed
Arbuscular Mycorrhizal Fungi in Agriculture
Arbuscular mycorrhizal (AM) fungi are biotrophic symbionts forming close relationships with an estimated 80% of terrestrial plants suitable as their host. Via an established AM fungal–host relationship, soil-bound nutrients are made available to the host plant through root cortical arbuscules as the site of exchange. At these sites, photosynthetic carbohydrates are provided to the AM fungus—carbohydrates that cannot be produced by the fungus. AM fungal–host symbiosis is very sensitive to soil disturbance, for example, agricultural tillage practices can damage and reduce AM fungal abilities to interact with a host and provide plant growth-promoting properties.
  • 1.4K
  • 13 Apr 2022
Topic Review
Smart Sanitation
The Toilet Board Coalition defines Smart Sanitation as a way to build resilience in cities, communities and sectors by utilizing Fourth Industrial Revolution technologies to improve the collection and monitoring of wastewater for both individualized and aggregate-level preventative health surveillance. 
  • 1.4K
  • 09 Nov 2020
Topic Review
Turtles in Malaysia
Approximately 356 species of turtles inhabit saltwater and freshwater habitats globally, except in Antarctica. Twenty-four species of turtles have been reported in Malaysia, four of which are sea turtles. The state of Terengganu harbored the highest number of turtles, with 17 different reported species. 
  • 1.4K
  • 19 Sep 2022
Topic Review
IFN Signaling in Neutrophils
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges.
  • 1.4K
  • 26 May 2021
Topic Review
Bacopa monnieri (L.) Wettst.
Bacopa monnieri has been used as a reputed drug in the Indian traditional ayurvedic system for centuries. This medicinal herb with important phytopharmaceuticals has been popularly known as “Brahmi”. In recent years, B. monnieri has been extensively studied for its bioactive constituents, constituents responsible for memory enhancing effect, and also its diverse other useful effects. It possesses many pharmacological activities such as antioxidant, gastrointestinal, endocrine, antimicrobial, anti-inflammatory etc. The plant has been also used for the treatment of neurological and neuropsychiatric diseases. Due to its multipurpose therapeutic potential, micropropagation using axillary meristems and de novo organogenesis has been extensively studied in the species and is being reviewed. High frequency direct shoot organogenesis can be induced in excised leaf and internode explants in the absence of exogenous phytohormones and the rate of induction is enhanced in the presence of exogenous cytokinins, supplements, growth regulators, etc. Using explants from tissue culture raised plants, direct shoot regeneration leading to production of more than 100 rooted plants/explant within 8–12 weeks period with 85%–100% survival in the field after acclimatization can be expected following optimized protocols. Bioreactor based micropropagation was found to increase the multiplication rate of shoot cultures for the commercial propagation of B. monnieri plants. The maximum content of bacosides has been recorded in shoot biomass using an airlift bioreactor system. Further studies for the biosynthesis of bacosides and other secondary metabolites need to be conducted in the species utilizing untransformed shoot cultures in bioreactors.
  • 1.4K
  • 28 Oct 2020
Topic Review Peer Reviewed
Bioactive Compounds from Eruca sativa Seeds
Eruca sativa Miller (Brassicaceae) is an insect-pollinated diploid annual species which grows spontaneously in the entire Mediterranean basin from semi-arid to arid-hot conditions and is cultivated in Northern America, Europe, and Asia as either salad or oilseed crop. Here, some essential background was provided on this versatile crop, summarizing the present status of Eruca sativa research focusing on the wealth of bioactive ingredients in its seeds, which may find exploitation in agriculture, in the food industries and as nutraceuticals for their antioxidant and anti-inflammatory properties. Fatty acids of Eruca sativa seed oil, gums, glucosinolates and soluble and insoluble phenol and flavonoid fractions in the defatted press cake are the main bioactive compounds considered to date by the scientific literature and that deserve attention for their physical and biological activities. 
  • 1.4K
  • 03 Mar 2023
  • Page
  • of
  • 1814
Video Production Service