Topic Review
Cadmium and Lead Exposure
This entry provides information relevant to public health policy regarding advisable exposure limits for cadmium (Cd) and lead (Pb) that have no biologic role in humans. All of their perceptible effects are toxic. These metals exist in virtually all foodstuffs. Foods which are frequently consumed in large quantities such as cereals, rice, potatoes and vegetables contribute the most to total intake of these metals. Because Cd and Pb exposure are highly prevalent, even a small increase in disease risk can result in a large number of people affected by a disease that is preventable. Public measures to minimize environmental pollution and the food-chain transfer of Cd and Pb are required to prevent Cd- and Pb- related ailments and mortality as are risk reduction measures that set a maximally permissible concentration of Cd and Pb in staple food to the lowest achievable levels.
  • 1.7K
  • 29 Oct 2020
Topic Review
Melanogenesis in Immune Systems
Melanocytes and melanin play a wide range of roles such as adsorption of metals, thermoregulation, and protection from foreign enemies by camouflage.
  • 1.7K
  • 14 Jan 2021
Topic Review
Nuda
Nuda is a class of ctenophores or comb jellies. The class contains a single family, Beroidae, with two genera, Beroe and Neis, and the group is more commonly referred to as the "beroids". They are distinguished from other comb jellies by the complete absence of tentacles, in both juvenile and adult stages. Beroe is found in all the world's oceans and seas, and the monotypic Neis occurs only near Australia; all beroids are free-swimmers that form part of the plankton.
  • 1.7K
  • 19 Oct 2022
Topic Review
Thin-Layer Chromatography Bioautography
Thin-layer chromatography (TLC) bioautography is a methodological technique that integrates the separation and analysis technology of TLC with biological activity detection technology, which is used to isolate, locate and evaluate the active constituents of natural creatures based on the guidance of activity.
  • 1.7K
  • 06 Aug 2021
Topic Review
Anti-diabetic Bioactive Peptides
Bioactive peptides released from the enzymatic hydrolysis of food proteins are currently a trending topic in the scientific community. Their potential as antidiabetic agents, by regulating the glycemic index, and thus to be employed in food formulation, is one of the most important functions of these peptides.  The future applicability that these molecules have due to their biological potential as functional ingredients makes them an important field of research, which could help the world population avoid suffering from several diseases, such as diabetes.
  • 1.7K
  • 31 Jul 2020
Topic Review
Glycerol
Glycerol (1,2,3-propanetriol) is a viscous odorless and colorless liquid, with a syrupy sweet flavor that may derive from both renewable and fossil sources
  • 1.7K
  • 06 Jan 2021
Topic Review
(1,3;1,4)-β-D-Glucans
(1,3;1,4)-β-D-Glucans, also named as mixed-linkage glucans, are unbranched non-cellulosic polysaccharides containing both (1,3)- and (1,4)-β-linkages. The linkage ratio varies depending upon species origin and has a significant impact on the physicochemical properties of the (1,3;1,4)-β-D-glucans.
  • 1.7K
  • 24 Sep 2021
Topic Review
Cardiac Glycosides
Cardiac glycosides (CG’s) are naturally occurring biologically active small molecules, used to diagnose a diversity of heart diseases such as congestive heart failure and cardiac arrhythmia. The story of CG’s started over 100 years ago when Sir William Withering reported the use of foxglove plant for treating “dropsy” associated with congestive heart failure and the foxglove plant (Digitalis purpurea) was still in the use for the extraction of Digoxin, a cardiac glycoside used to treat congestive heart failures (Johnson., 2012). The core structure of CGs comprises a steroid nucleus attached to a five-membered lactone ring (cardenolide) or six-membered lactone rings (bufadienolides) along with sugar moieties. Major plant-derived CGs were obtained from plant families of Apocynaceae, Scrophulariaceae, and Asparagaceae (Thevitia neriifolia, Neerium oleander, Digitalis purpurea, Digitalis lanata, Urginea maritime, and Strophanthus kombe). Structurally, all these contain a core steroid nucleus connected with sugar moiety at C3 position and lactone moiety at C17 position (Figure 1.3). The pharmacological significance of all the CG’s lies in the core steroid confirmation that contains A/B and C/D cis- portions and the properties such as pharmacokinetics and pharmacodynamics lie between the confined sugars molecules (Pongrakhananon., 2013). Apart from the plant sources, CG’s were also isolated from several animal species such as bufadienolide was isolated from frogs, and also mammalian tissues contain a cardiac glycoside which is similar to endogenous digitalis (Melero et al., 2000). Quite a few studies have conveyed that the human body does contain a lot more CG’s in different parts. For example, the plasma membrane contains Ouabain and Proscillaridin A and human urine contains digoxin and marinobufagenin whereas human lenses consist of 19-norbufalin (Schoner and Scheiner-Bobis., 2007). In the year 1785, William Withering was the first person to use a digitalis compound from Digitalis purpurea to treat congestive heart failures. Currently, Digoxin is used for treating congestive heart failures. The mechanism of action of Digoxin is that it can inhibit the sodium-potassium pump (Na+/K+-ATPase). Living organisms maintain more percentage of K+ within the cell and less percentage of Na+. However, the scenario at the outside of the cell is quite opposite to the intracellular conditions where a high percentage of Na+ and less percentage of K+ will be maintained. Hence, there is a concentration incline that exists between the outside and inside cellular environments, which will be maintained by sodium-potassium pump. The Na+/K+-ATPase is recognized as a transmembrane protein whose functions are to maintain ionic balance in the heart tissue. Na+/K+-ATPase utilizes ATP as the whole energy source, to exchange two K+ ions inside the cell and pushes three Na+ ions outside to maintain intra cellular homeostasis. Also, Na+/K+-ATPase transports glucose and amino acids by keeping less concentration of Na+ within the cell and helps in the maintenance of electrochemical incline. The increment of the Na+ level inside the cell retort to CGs fortifies the ion exchange mechanism. This leads to the expansion of intracellular Ca2+ percentage which therefore promotes organelle instances such as myocardial contractibility, and generates optimistic inotropic effects in the heart cell with CGs (Kaplan., 2002).  
  • 1.7K
  • 12 Aug 2020
Topic Review
Aphid Transmission of Potyvirus
Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission, and molecular interactions with hosts.
  • 1.7K
  • 21 Nov 2020
Topic Review
Mitogen-Activated Protein Kinase Signaling Pathway
The basic composition of the mitogen-activated protein kinase (MAPK) pathway is divided into three modules in sequence, with a cascade effect: MAPK kinase kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK. The MAPK signaling pathway is activated in over 50% of human oral cancer cases.
  • 1.7K
  • 11 Oct 2022
  • Page
  • of
  • 1814
Video Production Service