Topic Review
Coastal Adaptation to Sea-Level Rise
The Earth’s climate is changing; ice sheets and glaciers are melting and coastal hazards and sea level are rising in response. With a total population of over 300 million people situated on coasts, including 20 of the planet’s 33 megacities (over 10 million people), low-lying coastal areas represent one of the most vulnerable areas to the impacts of climate change. The need to identify and implement adaptation solutions to the impacts of climate change in coastal zones is urgent. 
  • 860
  • 17 Aug 2021
Topic Review
Core-Mantle Differentiation
Core-mantle differentiation is the set of processes that took place during the accretion stage of Earth's evolution (or more generally, of rocky planets) that results in the separation of iron-rich materials that eventually would conform a metal core, surrounded by a rocky mantle. According to the Safronov's model, protoplanets formed as the result of collisions of smaller bodies (planetesimals), which previously condensed from solid debris present in the original nebula. Planetesimals contained iron and silicates either already differentiated or mixed together. Either way, after impacting the Proto-Earth their materials very likely became homogenized. At this stage, the Proto-Earth was probably the size of Mars. Next followed the separation and stratification of the Proto-Earth's constituents, chiefly driven by their density contrasts. Factors such as pressure, temperature, and impact bodies in the primordial magma ocean have been involved in the differentiation process. The differentiation process is driven by the higher density of iron compared to silicate rocks, but the lower melting point of the former constitutes an important factor. In fact, once iron has melted, differentiation can take place whether silicate rocks are completely melted or not. On the premises of these plausible scenarios, several models have been proposed to account for the core-mantle differentiation following the stage of nebular formation of the solar system. They can be summarized into three mechanisms: 1) Percolation of iron alloy through silicate crystals; 2) Separation of metal from rock in a primordial magma ocean; 3) Migration of iron diapirs or dikes through the mantle.
  • 839
  • 08 Nov 2022
Topic Review
Crystal Mush
A crystal mush is a magmatic body which contains a significant amount of crystals (up to 50% of the volume) suspended in the liquid phase (melt). As the crystal fraction makes up less than half of the volume, there is no rigid large-scale three-dimensional network as in solids. As such, their rheological behavior mirrors that of absolute liquids. Within a single crystal mush, there is grading to a higher solid fraction towards the margins of the pluton while the liquid fraction increases towards the uppermost portions, forming a liquid lens at the top. Furthermore, depending on depth of placement crystal mushes are likely to contain a larger portion of crystals at greater depth in the crust than at shallower depth, as melting occurs from the adiabatic decompression of the magma as it rises, this is particularly the case for mid-oceanic ridges. Seismic investigation offers strong evidence for the existence of crystal mushes rather than fully liquid magmatic bodies. Crystal mushes can have a wide range of chemical and mineralogical compositions, from mafic (SiO2-poor, MgO-rich) to felsic (SiO2-rich, MgO-poor).
  • 792
  • 01 Dec 2022
Topic Review
Debris Flow Hazard
Global climate change has increased severe torrential hazards, particularly debris flows in mountainous regions. After floods and earthquakes, debris flows are the most devastating natural hazard in the world. The effects of debris flow on human life and built environments necessitate reconsidering current infrastructure planning, engineering, and risk management practices. Hence, the vulnerability of elements at risk is critical for effective risk reduction systems.
  • 846
  • 27 Dec 2022
Topic Review
Diamond-Bearing Ophiolite
Ophiolites are fragments of ancient oceanic crust and upper mantle, which is created at ocean spreading ridges and then emplaced on land. Ophiolite-hosted diamond discovered in ophiolitic peridotite and chromitite is considered to be a new type that has been named an ophiolite-type by Yang et al., in 2011. 
  • 683
  • 22 Nov 2021
Topic Review
Driving Factors of Ecosystem Services
The optimization of tree structure contributes to the improvement in Ecosystem service (ES) provision and the regulation capacity. Species diversity plays an important role in provision services, while functional diversity is equally important in regulation services. Plant root functional traits can not only help regulation services but also determine the species and structure of rhizosphere microbial communities. The response of ES to a certain factor has been extensively reviewed, but the interaction of multiple driving factors needs to be further studied, especially in how to drive the supply capacity of ES in multi-factor and multi-scale ways. Clarifying the driving mechanism of ES at different scales will help to improve the supply capacity of the ecosystem and achieve the goal of sustainable development.
  • 301
  • 21 Apr 2023
Topic Review
Driving Mechanism of Spring-Algal-Bloom in Lakes Freeze-Thaw Processes
Lakes are important carriers of surface water resources, playing a role in protecting biodiversity, maintaining ecological balance within the watershed, and supplying fresh water. The migration pathways and rates of nitrogen and phosphorus nutrients to lakes have exhibited diversity and variability under the dual pressure of global warming and human activities. The algal blooms in mid- to high-latitude lakes are facing challenges such as earlier outbreak times, longer duration, and increased frequency of occurrence. Previous studies have found that the presence of freeze-thaw processes is the key to promoting the mechanism of algal blooms in mid- to high-latitude lakes, which is different from that in low-latitude lakes. Hence, how to reveal the impact mechanism of freeze-thaw processes on the occurrence and development of spring algal blooms is crucial for water-environment management.
  • 78
  • 30 Jan 2024
Topic Review
DSGSDs on Mars
Deep-Seated Gravitational Slope Deformations (DSGSDs) are a set of slow and complex gravity-driven deformational processes, involving entire slopes (or large portions of them) over long time intervals. These phenomena have been identified on Mars since the early 2000s, and several detailed studies were conducted on them.
  • 869
  • 29 Apr 2021
Topic Review
East China Sea Basin
The back-arc East China Sea Basin lies on extended continental crust at the leading edge of the Eurasian plate. Geology over the East China Sea Shelf Basin have been studied bits and pieces by various researchers over the past 20 years. This work is intended to provide a full review of the tectonic evolution over the East China Sea Basin. 
  • 2.2K
  • 30 Oct 2020
Topic Review
Evolution of Hawaiian Volcanoes
The fifteen volcanoes that make up the eight principal islands of Hawaii are the youngest in a chain of more than 129 volcanoes that stretch 5,800 kilometres (3,600 mi) across the North Pacific Ocean, called the Hawaiian–Emperor seamount chain. Hawaiʻi's volcanoes rise an average of 4,572 metres (15,000 ft) to reach sea level from their base. The largest, Mauna Loa, is 4,169 metres (13,678 ft) high. As shield volcanoes, they are built by accumulated lava flows, growing a few meters or feet at a time to form a broad and gently sloping shape. Hawaiian islands undergo a systematic pattern of submarine and subaerial growth that is followed by erosion. An island's stage of development reflects its distance from the Hawaii hotspot.
  • 252
  • 15 Nov 2022
  • Page
  • of
  • 12