Topic Review
Compounds of Oxygen
The oxidation state of oxygen is −2 in almost all known compounds of oxygen. The oxidation state −1 is found in a few compounds such as peroxides. Compounds containing oxygen in other oxidation states are very uncommon: −​1⁄2 (superoxides), −​1⁄3 (ozonides), 0 (elemental, hypofluorous acid), +​1⁄2 (dioxygenyl), +1 (dioxygen difluoride), and +2 (oxygen difluoride). Oxygen is reactive and will form oxides with all other elements except the noble gases helium, neon, argon, and krypton.
  • 4.0K
  • 26 Oct 2022
Topic Review
Phenolic Acids
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties.
  • 3.9K
  • 26 Sep 2021
Topic Review
Fresh Fruit and Vegetable Waste in Human Health
Food supply disruption and shortage verified during the current pandemic events are a scenario that many anticipate for the near future. The impact of climate changes on food production, the continuous decrease in arable land, and the exponential growth of the human population are important drivers for this problem. 
  • 3.8K
  • 19 Jan 2023
Topic Review
Post-transition Metal
Post-transition metals are a set of metallic elements in the periodic table located between the transition metals to their left, and the metalloids to their right. Depending on where these adjacent groups are judged to begin and end, there are at least five competing proposals for which elements to include: the three most common contain six, ten and thirteen elements, respectively (see image). All proposals include gallium, indium, tin, thallium, lead, and bismuth. Physically, post-transition metals are soft (or brittle), have poor mechanical strength, and have melting points lower than those of the transition metals. Being close to the metal-nonmetal border, their crystalline structures tend to show covalent or directional bonding effects, having generally greater complexity or fewer nearest neighbours than other metallic elements. Chemically, they are characterised—to varying degrees—by covalent bonding tendencies, acid-base amphoterism and the formation of anionic species such as aluminates, stannates, and bismuthates (in the case of aluminium, tin, and bismuth, respectively). They can also form Zintl phases (half-metallic compounds formed between highly electropositive metals and moderately electronegative metals or metalloids). The name is universally used, but not officially sanctioned by any organization such as the IUPAC. The origin of the term is unclear: one early use was in 1940 in a chemistry text. Alternate names for this group are B-subgroup metals, other metals, and p-block metals; and at least thirteen other labels.
  • 3.7K
  • 21 Nov 2022
Topic Review
Two-Dimensional Silicon Carbide
Two-dimensional silicon carbide (2D SiC) is a single/few atomic layer of silicon carbide.   2D SiC has a graphene-like honeycomb structure consisting of alternating Si and C atoms. In the monolayer SiC, the C and Si atoms bond through  sp2 hybridization to form the SiC sheet.  As a direct wide bandgap semiconducting material, 2D SiC has the potential to bring revolutionary advances into power electronics, optoelectronic and other SiC-based devices. It can overcome current limitations with silicon, bulk SiC, and gapless graphene. In addition to SiC, which is the most stable form of monolayer silicon carbide, other compositions, i.e. SixCy, are also predicted to be energetically favorable. Depending on the stoichiometry and bonding, monolayer SixCy may behave as a semiconductor, semimetal or topological insulator. With different Si/C ratios, the emerging 2D silicon carbide materials could attain novel electronic, optical, magnetic, mechanical, and chemical properties that go beyond those of graphene, silicene, and already discovered 2D semiconducting materials.
  • 3.6K
  • 08 May 2022
Topic Review
Cluster Chemistry
In chemistry, a cluster is an ensemble of bound atoms or molecules that is intermediate in size between a molecule and a bulk solid. Clusters exist of diverse stoichiometries and nuclearities. For example, carbon and boron atoms form fullerene and borane clusters, respectively. Transition metals and main group elements form especially robust clusters. Clusters can also consist solely of a certain kind of molecules, such as water clusters. The phrase cluster was coined by F.A. Cotton in the early 1960s to refer to compounds containing metal–metal bonds. In another definition a cluster compound contains a group of two or more metal atoms where direct and substantial metal bonding is present. The prefixed terms "nuclear" and "metallic" are used and imply different meanings. For example, polynuclear refers to a cluster with more than one metal atom, regardless of the elemental identities. Heteronuclear refers to a cluster with at least two different metal elements. The main cluster types are "naked" clusters (without stabilizing ligands) and those with ligands. For transition metal clusters, typical stabilizing ligands include carbon monoxide, halides, isocyanides, alkenes, and hydrides. For main group elements, typical clusters are stabilized by hydride ligands. Transition metal clusters are frequently composed of refractory metal atoms. In general metal centers with extended d-orbitals form stable clusters because of favorable overlap of valence orbitals. Thus, metals with a low oxidation state for the later metals and mid-oxidation states for the early metals tend to form stable clusters. Polynuclear metal carbonyls are generally found in late transition metals with low formal oxidation states. The polyhedral skeletal electron pair theory or Wade's electron counting rules predict trends in the stability and structures of many metal clusters. Jemmis mno rules have provided additional insight into the relative stability of metal clusters.
  • 3.5K
  • 08 Nov 2022
Topic Review
Compounds of Fluorine
Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding (a weaker bridging link to certain nonmetals). Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements (but not all) the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others (elements in certain groups) the highest oxidation states of oxides and fluorides are always equal.
  • 3.0K
  • 16 Nov 2022
Topic Review
Rice Husk
The development of engineered silica particles by using low-cost renewable or waste resources is a key example of sustainability. Rice husks have emerged as a renewable resource for the production of engineered silica particles as well as bioenergy.
  • 3.0K
  • 17 Jan 2022
Topic Review
Petroleum
Petroleum, also known as crude oil, or simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil. A fossil fuel, petroleum is formed when large quantities of dead organisms, mostly zooplankton and algae, are buried underneath sedimentary rock and subjected to both prolonged heat and pressure. Petroleum has mostly been recovered by oil drilling. Drilling is carried out after studies of structural geology, sedimentary basin analysis, and reservoir characterisation. Recent developments in technologies have also led to exploitation of other unconventional reserves such as oil sands and oil shale. Once extracted, oil is refined and separated, most easily by distillation, into numerous products for direct use or use in manufacturing, such as gasoline (petrol), diesel and kerosene to asphalt and chemical reagents used to make plastics, pesticides and pharmaceuticals. Petroleum is used in manufacturing a wide variety of materials, and it is estimated that the world consumes about 100 million barrels (16 million cubic metres) each day. Petroleum production can be extremely profitable and was important for economic development in the 20th century, with some countries, so called "oil states", gaining significant economic and international power because of their control of oil production. Petroleum exploitation has significant negative environmental and social consequences. Most significantly, extraction, refining and burning of petroleum fuels all release large quantities of greenhouse gases, so petroleum is one of the major contributors to climate change. Furthermore, parts of the petroleum industry actively suppressed science and policy that aimed to prevent the climate crisis. Other negative environmental effects include the environmental impacts of exploration and exploitation of petroleum reserves, such as oil spills, and air and water pollution at the sites of utilization. All of these environmental impacts have direct health consequences for humans. Additionally, oil has also been a source of conflict leading to both state-led-wars and other kinds of conflicts (for example, oil revenue funded the Islamic State). Production of petroleum is expected to reach peak oil before 2035 as global economies lower dependencies on petroleum as part of climate change mitigation and a transition towards renewable energy and electrification. This is expected to have significant economic impacts that stakeholders argue need to be anticipated by a just transition and addressing the stranded assets of the petroleum industry.
  • 2.9K
  • 21 Oct 2022
Topic Review
Chemical looping
Chemical looping technology in general, is the rising star in chemical technologies, which is capable of low CO2 emissions with applications in the production of heat, fuels, chemicals, and electricity. This entry discusses the technology in general, gives an overview of some pilot scale plants and the different chemical looping processes with focus on the production of heat and chemicals, highlights the importance of the development of oxygen carrier materials with suitable properties, 2.11.0.0 2.11.0.0
  • 2.9K
  • 02 Nov 2020
  • Page
  • of
  • 44