Topic Review
Geobiology
Geobiology is a field of scientific research that explores the interactions between the physical Earth and the biosphere. It is a relatively young field, and its borders are fluid. There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life in the modern world. Geobiologic studies tend to be focused on microorganisms, and on the role that life plays in altering the chemical and physical environment of the pedosphere, which exists at the intersection of the lithosphere, atmosphere, hydrosphere and/or cryosphere. It differs from biogeochemistry in that the focus is on processes and organisms over space and time rather than on global chemical cycles. Geobiological research synthesizes the geologic record with modern biologic studies. It deals with process - how organisms affect the Earth and vice versa - as well as history - how the Earth and life have changed together. Much research is grounded in the search for fundamental understanding, but geobiology can also be applied, as in the case of microbes that clean up oil spills. Geobiology employs molecular biology, environmental microbiology, organic geochemistry, and the geologic record to investigate the evolutionary interconnectedness of life and Earth. It attempts to understand how the Earth has changed since the origin of life and what it might have been like along the way. Some definitions of geobiology even push the boundaries of this time frame - to understanding the origin of life and to the role that humans have played and will continue to play in shaping the Earth in the Anthropocene.
  • 983
  • 04 Nov 2022
Topic Review
Geochemical Analysis with Laser Mass Spectrometer
Laser ablation/ionisation mass spectrometer (named LMS) demonstrated its high performance for the chemical analysis of micrometre-sized objects, such as mineralogical grains, layers, biologically relevant films and microscopic fossils.
  • 492
  • 23 Aug 2022
Topic Review
Geochemical Characteristics of Oceanic Carbonatites
The occurrence of carbonatites in oceanic settings is very rare if compared with their continental counterpart, having been reported only in Cape Verde and Canary Islands. This entry provides an overview of the main geochemical characteristics of oceanic carbonatites, around which many debates still exist regarding their petrogenesis.
  • 741
  • 26 Mar 2021
Topic Review
Geochemical Modeling Applications
The geochemical computer model is an important innovation that exponentially evolved in the last decades, and that now plays a vital role in several areas of study, ranging from developing new models for surface complexation, reactive transport models, or the generation of thermodynamic data used to simulate or predict solubility reactions. An important application of geochemical modeling involves supporting the explanation or characterization of engineering systems related to waste management, wastewater reuse, evaluation of water quality from a landfill, metal speciation within soils in industrial areas, new technologies or process for waste treatment, and even the evaluation of the potential to use solid wastes in carbon sequestering processes.
  • 1.0K
  • 03 Aug 2021
Topic Review
Geochemistry of Manganese in Soils
Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. 
  • 554
  • 16 Jun 2023
Topic Review
Geocoding
Geocoding is the process of taking input text, such as an address or the name of a place, and returning a latitude/longitude location on the Earth's surface for that place. Reverse geocoding, on the other hand, converts geographic coordinates to a description of a location, usually the name of a place or an addressable location. Geocoding relies on a computer representation of address points, the street / road network, together with postal and administrative boundaries. The geographic coordinates representing locations often vary greatly in positional accuracy. Examples include building centroids, land parcel centroids, interpolated locations based on thoroughfare ranges, street segments centroids, postal code centroids (e.g. ZIP codes, CEDEX), and Administrative division Centroids.
  • 444
  • 10 Nov 2022
Topic Review
Geodetic Datum
A geodetic datum or geodetic system (also: geodetic reference datum or geodetic reference system) is a coordinate system, and a set of reference points, used for locating places on the Earth (or similar objects). An approximate definition of sea level is the datum WGS 84, an ellipsoid, whereas a more accurate definition is Earth Gravitational Model 2008 (EGM2008), using at least 2,159 spherical harmonics. Other datums are defined for other areas or at other times; ED50 was defined in 1950 over Europe and differs from WGS 84 by a few hundred meters depending on where in Europe you look. Mars has no oceans and so no sea level, but at least two martian datums have been used to locate places there. Datums are used in geodesy, navigation, and surveying by cartographers and satellite navigation systems to translate positions indicated on maps (paper or digital) to their real position on Earth. Each starts with an ellipsoid (stretched sphere), and then defines latitude, longitude and altitude coordinates. One or more locations on the Earth's surface are chosen as anchor "base-points". The difference in co-ordinates between datums is commonly referred to as datum shift. The datum shift between two particular datums can vary from one place to another within one country or region, and can be anything from zero to hundreds of meters (or several kilometers for some remote islands). The North Pole, South Pole and Equator will be in different positions on different datums, so True North will be slightly different. Different datums use different interpolations for the precise shape and size of the Earth (reference ellipsoids). Because the Earth is an imperfect ellipsoid, localised datums can give a more accurate representation of the area of coverage than WGS 84. OSGB36, for example, is a better approximation to the geoid covering the British Isles than the global WGS 84 ellipsoid. However, as the benefits of a global system outweigh the greater accuracy, the global WGS 84 datum is becoming increasingly adopted. Horizontal datums are used for describing a point on the Earth's surface, in latitude and longitude or another coordinate system. Vertical datums measure elevations or depths.
  • 4.8K
  • 24 Nov 2022
Topic Review
Geodiversity and Geoconservation in Central America
Central America is located in a dynamic region where tectonics and volcanism together with the tropical climate and its diverse vegetation have shaped the landscapes. 
  • 784
  • 06 Jan 2022
Topic Review
Geodiversity and Geotourism
Geodiversity has recently emerged as a key idea for recognizing the value of abiotic nature. The concept has vital implications for informing tourism sustainability research; however, to date, tourism scholarship has not shown adequate engagement with this concept. The issue also assumes further significance in the Anthropocene, where our species has become a geological force. It is argued that, in the Anthropocene, it is no longer enough for tourism sustainability research to remain preoccupied with the human predicament in the Anthropocene or the decline of biotic nature at some prominent tourism destinations, and it is imperative that tourism scholars embrace the concern for abiotic diversity and dynamic earth processes that provide vital resources and services for tourism planetwide.
  • 485
  • 17 Jun 2022
Topic Review
Geoethical Thinking in the Educational System of Greece
Geoethics is a relatively new and interdisciplinary field that addresses the ethical implications of the use and management of the Earth’s resources and environment. It encompasses ethical considerations related to geosciences and the environment, such as the protection of geological heritage, the management of natural resources, and the mitigation of natural hazards. Furthermore, it includes the ethical implications of the use of geotechnology, such as the use of geothermal energy and the handling of geological waste. It aims to ensure that the needs and well-being of present and future generations are considered when making decisions regarding the use and management of natural resources, including geoheritage.
  • 364
  • 16 May 2023
  • Page
  • of
  • 271
ScholarVision Creations