Topic Review
Catalytic Ozonation and Membrane Contactors
Membrane filtration has been widely used in water and wastewater treatment. However, this process is not very effective for the removal of refractory organic compounds (e.g., of pharmaceutical origin). Alongside, ozonation is an efficient oxidative process, although ozone is considered to be a rather selective oxidant agent and sometimes it presents quite low mineralization rates. An improvement of this oxidation process is catalytic ozonation, which can degrade organic compounds via the acceleration of hydroxyl radicals’ production. The hydroxyl radicals are unselective oxidative species, presenting high reaction constants with organic compounds. An efficient way to couple membrane filtration with catalytic ozonation is the deposition of an appropriate solid catalyst onto the membrane surface. Catalytic membrane ozonation can enhance the degradation of these compounds and, subsequently, the incidence of membrane fouling (i.e., the major problem of membrane uses).
  • 1.0K
  • 18 Nov 2020
Topic Review
Carbonatite-Related REE Deposits
The rare earth elements (REEs) have unique and diverse properties that make them function as an “industrial vitamin” and thus, many countries consider them as strategically important resources. China, responsible for more than 60% of the world’s REE production, is one of the REE‐rich countries in the world. Most REE (especially light rare earth elements (LREE)) deposits are closely related to carbonatite in China. Such a type of deposit may also contain appreciable amounts of industrially critical metals, such as Nb, Th and Sc. According to the genesis, the carbonatite‐related REE deposits can be divided into three types: primary magmatic type, hydrothermal type and carbonatite weathering‐crust type. This paper provides an overview of the carbonatite‐related endogenetic REE deposits, i.e., primary magmatic type and hydrothermal type. The carbonatite‐related endogenetic REE deposits are mainly distributed in continental margin depression or rift belts, e.g., Bayan Obo REE‐Nb‐Fe deposit, and orogenic belts on the margin of craton such as the Miaoya Nb‐REE deposit. The genesis of carbonatite‐related endogenetic REE deposits is still debated. It is generally believed that the carbonatite magma is originated from the low‐degree partial melting of the mantle. During the evolution process, the carbonatite rocks or dykes rich in REE were formed through the immiscibility of carbonate-silicate magma and fractional crystallization of carbonate minerals from carbonatite magma. The ore‐forming elements are mainly sourced from primitive mantle, with possible contribution of crustal materials that carry a large amount of REE. In the magmatic-hydrothermal system, REEs migrate in the form of complexes, and precipitate corresponding to changes of temperature, pressure, pH and composition of the fluids. A simple magmatic evolution process cannot ensure massive enrichment of REE to economic values. Fractional crystallization of carbonate minerals and immiscibility of melts and hydrothermal fluids in the hydrothermal evolution stage play an important role in upgrading the REE mineralization. Future work of experimental petrology will be fundamental to understand the partitioning behaviors of REE in magmatic-hydrothermal system through simulation of the metallogenic geological environment. Applying “comparative metallogeny” methods to investigate both REE fertile and barren carbonatites will enhance the understanding of factors controlling the fertility.
  • 3.4K
  • 17 Nov 2020
Topic Review
Wetland Systems
We provide here an overview of the use and role of aquatic macrophytes in constructed wetland systems. The ability of plants to remove metals, pharmaceutical products, pesticides, cyanotoxins and nanoparticles in constructed wetlands were compared with the removal effciency of non-planted systems, aiming to evaluate the capacity of plants to increase the removal effciency of the systems. Moreover, this review also focuses on the management and destination of the biomass produced through natural processes of water filtration. The use of macrophytes in constructed wetlands represents a promising technology, mainly due to their effciency of removal and the cost advantages of their implantation. However, the choice of plant species composing constructed wetlands should not be only based on the plant removal capacity since the introduction of invasive species can become an ecological problem.
  • 2.0K
  • 17 Nov 2020
Topic Review
Soil Health
Soil health is the capacity of the soil to provide an environment for optimum growth and development of plants, while also ensuring the health of animals and humans. Animal manure has been used for centuries as a source of nutrients in agriculture. However, many other soil properties that contribute to soil health are affected when manure is applied. Bulk density, aggregate stability, infiltration, water holding capacity, soil fertility, and biological properties are impacted to various degrees with manure application. The goal of this paper was to compile the research findings on the effects of various livestock manure types on soil fertility, soil physical properties, soil biology and the yield of various cereal crops. Specifically, this paper summarizes results for poultry, cattle, and swine manure used in various cropping systems. Although there are conflicting results in the literature with regards to the effect of manure on various soil properties, the literature offers convincing evidence of beneficial impacts of manure on soil and the growth of crops. The degree to which manure affects soil depends on the physical and chemical properties of the manure itself and various management and environmental factors including rate and timing of application, soil type, and climate.
  • 848
  • 16 Nov 2020
Topic Review
Urban Overheating in Australia
Cities in Australia are experiencing unprecedented levels of urban overheating, which has caused a significant impact on the country’s socioeconomic environment. This study provides a comprehensive review on urban overheating, its impact on health, energy, economy, and the heat mitigation potential of a series of strategies in Australia. Existing studies show that the average urban heat island (UHI) intensity ranges from 1.0 °C to 13.0 °C. The magnitude of urban overheating phenomenon in Australia is determined by a combination of UHI effects and dualistic atmospheric circulation systems (cool sea breeze and hot desert winds). The strong relation between multiple characteristics contribute to dramatic fluctuations and high spatiotemporal variabilities in urban overheating. In addition, urban overheating contributes to serious impacts on human health, energy costs, thermal comfort, labour productivity, and social behaviour. 
  • 1.4K
  • 16 Nov 2020
Topic Review
Global Open-Data Remote-Sensing Satellite Missions
The application of global open data remote sensing satellite missions is in the state of rapid growth, ensuring an observation with high spatial and spectral resolution over large areas. Multispectral (Landsat, Sentinel-2, and MODIS), radar (Sentinel-1), and digital elevation model missions (SRTM, ASTER) were analyzed, as the most often used global open data satellite missions, according to the number of scientific research articles published in Web of Science database. Processing methods of these missions’ data consisting of image preprocessing, spectral indices, image classification methods, and modelling of terrain topographic parameters were analyzed and demonstrated. Possibilities of their application in land cover, land suitability, vegetation monitoring, and natural disaster management were evaluated, having high potential in broad use worldwide. Availability of free and complementary satellite missions, as well as the open-source software, ensures the basis of effective and sustainable land use management, with the prerequisite of the more extensive knowledge and expertise gathering at a global scale.
  • 1.7K
  • 12 Nov 2020
Topic Review
Pedro JM Costa
My research focus on the study of coastal processes using geomorphological and sedimentological data coupled with physical and numerical modeling to understand morphological and sediment changes caused by natural hazards (e.g. tsunamis and storms) and their impacts on the environment. I also work on the establishment of provenance relationships in siliciclastic sediments, aspects of aeolian sediment transport, Antarctic soils, Mars geology and geoarchaeological studies.
  • 941
  • 10 Nov 2020
Topic Review
Amin Beiranvand Pour
My scholarly interests range widely, from mineral exploration to environmental issues such as geo-hazard, structural mapping, geothermal and geomorphic and coastal geology investigations. Subsequently, I have conducted several research projects for geological mapping, disaster management and environmental modeling using a variety of satellite remote sensing data such as the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Landsat Enhanced Thematic Mapper+ (ETM+), Landsat-8, Advanced Land Imager (ALI), Hyperion and Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite data in arid and semi-arid terrains, Antarctic, Arctic and tropical environments. 
  • 1.0K
  • 10 Nov 2020
Topic Review
GaoFen-4 Images of Coastal Zones
Cloud-cover information is important for a wide range of scientific studies, such as the studies on water supply, climate change, earth energy budget, etc. In remote sensing, correct detection of clouds plays a crucial role in deriving the physical properties associated with clouds that exert a significant impact on the radiation budget of planet earth. Although the traditional cloud detection methods have generally performed well, these methods were usually developed specifically for particular sensors in a particular region with a particular underlying surface (e.g., land, water, vegetation, and man-made objects). Coastal regions are known to have a variety of underlying surfaces, which represent a major challenge in cloud detection. Therefore, there is an urgent requirement for developing a cloud detection method that could be applied to a variety of sensors, situations, and underlying surfaces. In the present study, a cloud detection method based on spatial and spectral uniformity of clouds was developed. In addition to having a spatially uniform texture, a spectrally approximate value was also present between the blue and green bands of the cloud region. The blue and green channel data appeared more uniform over the cloudy region, i.e., the entropy of the cloudy region was lower than that of the cloud-free region. On the basis of this difference in entropy, it would be possible to categorize the satellite images into cloud region images and cloud-free region images. Furthermore, the performance of the proposed method was validated by applying it to the data from various sensors across the coastal zone of the South China Sea. The experimental results demonstrated that compared to the existing operational algorithms, EN-clustering exhibited higher accuracy and scalability, and also performed robustly regardless of the spatial resolution of the different satellite images. It is concluded that the EN-clustering algorithm proposed in the present study is applicable to different sensors, different underlying surfaces, and different regions, with the support of NDSI and NDBI indices to remove the interference information from snow, ice, and man-made objects.
  • 604
  • 09 Nov 2020
Topic Review
Wastewater Refinery
The concept of wastewater refinery introduces a new concept of wastewater treatment and management that aims at extracting the most of wastewater components such as water, energy, nitrogen, phosphorous, to co-produce different valuable outputs. It represents a paradigmatic shift in wastewater management, and it is well aligned with the concept of circular economy. A case study on Qatar’s wastewater revealed that significant quantities of valuable resources are embodied in the country’s wastewater, with potential to be recovered. Valorisation of organic constituents and the recovery of nitrogen, phosphorus, and sulphide should be given priority.
  • 1.7K
  • 05 Nov 2020
  • Page
  • of
  • 270
Video Production Service