You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
TENG-Based Self-Powered Neuroprosthetics
TENG-Based Self-Powered Neuroprosthetics is a neuroprosthetic system using a triboelectric nanogenerator as the power source to generator the current pulses required for neural stimulations. The thin-film triboelectric nanogenerator can be attached onto the heart or buried under the skin to convert the mechanical energy from the movement of organs, such as heart beat, or the hand tapping onto the skin to electrical current pulses. This system is promising to realize a fully self-powered neural modulation with much reduced device complexity. 
  • 1.1K
  • 10 Oct 2020
Topic Review
Caregiving in Parkinson´s Disease and Deep Brain Stimulation
In Parkinson’s disease (PD) patients, the progressive nature of the disease and the variability of disabling motor and non-motor symptoms contribute to the growing caregiver burden (CB) of PD partners and conflicts in their relationships. In advanced stages of the disease, Deep Brain Stimulation (DBS) improves PD symptoms and patients quality of life but the effect of DBS on CB of PD partners seems to be heterogeneous. The CB in the context of DBS framing both pre-, peri- and postoperative aspects aims to be illuminated, and further recognition of caregiver burden in partners of PD patients with DBS will be stimulated.
  • 1.0K
  • 18 Feb 2022
Topic Review
Kynurenine Pathway in Neurodegeneration
The astrocytes and neuronal cells are considered to be neuroprotective, whereas the infiltrating macrophages and activated microglia are considered to be neurotoxic. Therefore, multiple products of KP can have neuroprotective, neurotoxic, and immunomodulatory effects. QUIN, an excitotoxin, is reported to be the most significant among them, which results in the death of neurons.
  • 1.0K
  • 02 Aug 2021
Topic Review
Endothelial Progenitor Cells in Neurovascular Disorders
Endothelial progenitor cells (EPCs) are a population of cells that circulate in the blood looking for areas of endothelial or vascular injury in order to repair them. Endothelial dysfunction is an important component of disorders with neurovascular involvement. EPCs have a capacity to repair or replace the damaged endothelium through a differentiation into mature endothelial cells, which are able to embed into the new vessels. Moreover, through a secretion of various growth factors, including stromal cell-derived factor-1α (SDF-1α), vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1), they promote angiogenesis or vasculogenesis and recruit more EPCs. EPCs express various cell markers on their surface, which include both markers characteristic for hematopoietic stem cells (CD34 and CD133) and markers characteristic for endothelial cells, such as VEGFR-2 (vascular endothelial growth factor receptor-2), vWF (von Willebrand factor), VE-cadherin (vascular endothelial cadherin) or CD144, Tie-2, CD62E (e-selectin) and c-kit/CD117.
  • 1.0K
  • 01 Nov 2022
Topic Review
Transcranial Magnetic Stimulation of the Primary Motor Cortex
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction.
  • 1.0K
  • 19 Jun 2022
Topic Review Video
Red Blood Cells in Stroke
Stroke constitutes the second highest cause of morbidity and mortality worldwide while also impacting the world economy, triggering substantial financial burden in national health systems. High levels of blood glucose, homocysteine, and cholesterol are causative factors for atherothrombosis. These molecules induce erythrocyte dysfunction, which can culminate in atherosclerosis, thrombosis, thrombus stabilization, and post-stroke hypoxia. Glucose, toxic lipids, and homocysteine result in erythrocyte oxidative stress. This leads to phosphatidylserine exposure, promoting phagocytosis. Phagocytosis by endothelial cells, intraplaque macrophages, and vascular smooth muscle cells contribute to the expansion of the atherosclerotic plaque.
  • 1.0K
  • 27 Feb 2023
Topic Review
Iron Homeostasis
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain.
  • 1.0K
  • 15 Sep 2023
Topic Review
Diagnosis of Cerebral Veins and Dural Sinuses Thrombosis
Cerebral venous thrombosis (CVT) is a relatively rare disorder in the general population and is frequently misdiagnosed upon initial examination. The knowledge of wide clinical aspects and imaging signs will be essential in providing a timely diagnosis. 
  • 1.0K
  • 18 May 2022
Topic Review
Nuclear Factor-E2-Related Factor 2 in Neurodegenerative Disorders
Nuclear factor-E2-related factor 2 (Nrf2) is a short-lived protein that works as a transcription factor and is related to the expression of many cytoprotective genes involved in xenobiotic metabolism and antioxidant responses. Nrf2 is a key regulator of OS defense and research supports a protective and defending role of Nrf2 against neurodegenerative conditions.
  • 1.0K
  • 10 Jun 2022
Topic Review
Acute Ischemic Stroke
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS, recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post-stroke BBB deficits needs to be revised, these recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete and treatment options remain limited. This entry summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews the related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
  • 1.0K
  • 13 Sep 2021
Topic Review
Neurofibromatosis Type 2 (NF2)
Patients diagnosed with neurofibromatosis type 2 (NF2) are extremely likely to develop meningiomas, in addition to vestibular schwannomas. Meningiomas are a common primary brain tumor; many NF2 patients suffer from multiple meningiomas. In NF2, patients have mutations in the NF2 gene, specifically with loss of function in a tumor-suppressor protein that has a number of synonymous names, including: Merlin, Neurofibromin 2, and schwannomin. Merlin is a 70 kDa protein that has 10 different isoforms. The Hippo Tumor Suppressor pathway is regulated upstream by Merlin. This pathway is critical in regulating cell proliferation and apoptosis, characteristics that are important for tumor progression. Mutations of the NF2 gene are strongly associated with NF2 diagnosis, leading to benign proliferative conditions such as vestibular schwannomas and meningiomas. Unfortunately, even though these tumors are benign, they are associated with significant morbidity and the potential for early mortality. In this review, we aim to encompass meningiomas and vestibular schwannomas as they pertain to NF2 by assessing molecular genetics, common tumor types, and tumor pathogenesis.
  • 1.0K
  • 22 Feb 2021
Topic Review
Caenorhabditis elegans and Tau Toxicity
Relevant information on the molecular basis of human neurodegeneration in vivo can be obtained using the nematode Caenorhabditis elegans (C. elegans). Two main approaches can be applied: the overexpression of genes/proteins leading to neuronal dysfunction and death and studies in which proteins prone to misfolding are exogenously administered to induce a neurotoxic phenotype. These approaches can be employed to screen drugs and small molecules that can interact with the biogenesis and dynamics of formation of tau aggregates and to analyze their interactions with other cellular proteins.
  • 1.0K
  • 13 Dec 2020
Topic Review
Prion Diseases
Prion diseases are progressive and transmissive neurodegenerative diseases. The conformational conversion of normal cellular prion protein (PrPC) into abnormal pathogenic prion protein (PrPSc) is critical for its infection and pathogenesis.
  • 1.0K
  • 12 Jun 2021
Topic Review
Pharmacological Potential of 3-Benzazepines in NMDAR-Linked Pathophysiological Processes
The number of N-Methyl-D-aspartate receptor (NMDAR) linked neurodegenerative diseases such as Alzheimer’s disease and dementia is constantly increasing. This is partly due to demographic change and presents new challenges to societies. To date, there are no effective treatment options. Medications are nonselective and can lead to unwanted side effects in patients. A promising therapeutic approach is the targeted inhibition of NMDARs in the brain. NMDARs containing different subunits and splice variants display different physiological properties and play a crucial role in learning and memory, as well as in inflammatory or injury processes. They become overactivated during the course of the disease, leading to nerve cell death. 
  • 1.0K
  • 19 May 2023
Topic Review
Neuropathic Pain and Rehabilitation
Neuropathic pain is an injury or disease of the central and/or peripheral somatosensory nervous system, and it has a significant impact on quality of life, especially since it is often refractory to treatment. Rehabilitative intervention is considered in various guidelines on neuropathic pain treatment, although not in an organic nor detailed way.
  • 1.0K
  • 03 Nov 2021
Topic Review
Tics and Emotions
Tics can be associated with neurological disorders and are thought to be the result of dysfunctional basal ganglia pathways. In Tourette Syndrome (TS), excess dopamine in the striatum is thought to excite the thalamo-cortical circuits, producing tics. When external stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, more dopamine is produced, furthering the excitation of tic-producing pathways. Emotional processing structures in the limbic are also activated during tics, providing further evidence of a possible emotional component in motor ticking behaviors.
  • 1.0K
  • 17 Feb 2022
Topic Review
Human Axonal Injury Responses
Neurons are structurally unique and have dendrites and axons that are vulnerable to injury. Some neurons in the peripheral nervous system (PNS) can regenerate their axons after injuries. However, most neurons in the central nervous system (CNS) fail to do so, resulting in irreversible neurological disorders. To understand the mechanisms of axon regeneration, various experimental models have been utilized in vivo and in vitro.
  • 1.0K
  • 22 Feb 2021
Topic Review
Nrf2/Keap1/ARE
Alzheimer’s disease (AD) is a progressive neuronal/cognitional dysfunction, leading to disability and death. Despite advances in revealing the pathophysiological mechanisms behind AD, no effective treatment has yet been provided. It urges the need for finding novel multi-target agents in combating the complex dysregulated mechanisms in AD. Amongst the dysregulated pathophysiological pathways in AD, oxidative stress seems to play a critical role in the pathogenesis progression of AD, with a dominant role of nuclear factor erythroid 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein-1 (Keap1)/antioxidant responsive elements (ARE) pathway. In the present study, a comprehensive review was conducted using the existing electronic databases, including PubMed, Medline, Web of Science, and Scopus, as well as related articles in the field. Nrf2/Keap1/ARE has shown to be the upstream orchestrate of oxidative pathways, which also ameliorates various inflammatory and apoptotic pathways. So, developing multi-target agents with higher efficacy and lower side effects could pave the road in the prevention/management of AD. The plant kingdom is now a great source of natural secondary metabolites in targeting Nrf2/Keap1/ARE. Among natural entities, phenolic compounds, alkaloids, terpene/terpenoids, carotenoids, sulfur-compounds, as well as some other miscellaneous plant-derived compounds have shown promising future accordingly. Prevailing evidence has shown that activating Nrf2/ARE and downstream antioxidant enzymes, as well as inhibiting Keap1 could play hopeful roles in overcoming AD. The current review highlights the neuroprotective effects of plant secondary metabolites through targeting Nrf2/Keap1/ARE and downstream interconnected mediators in combating AD.
  • 1.0K
  • 14 Dec 2020
Topic Review
Skin Biopsy in Peripheral Neuropathies
Skin biopsy is a minimally invasive technique with the advantage, compared to sural nerve biopsy, of being suitable to be applied to any site in our body, of being repeatable over time, of allowing the identification of each population of nerve fiber through its target. In patients with symptoms and signs of small fiber neuropathy the assessment of IntraEpidermal Nerve Fiber density is the gold standard to confirm the diagnosis while the quantification of sudomotor, pilomotor, and vasomotor nerve fibers allows to evaluate and characterize the autonomic involvement. All these parameters can be re-evaluated over time to monitor the disease process and to evaluate the effectiveness of the treatments. Myelinated fibers and their receptors can also be evaluated to detect a "dying back" neuropathy early when nerve conduction study is still normal. Furthermore, the morphometry of dermal myelinated fibers has provided new insight into pathophysiological mechanisms of different types of inherited and acquired large fibers neuropathies. In genetic neuropathies skin biopsy has become a surrogate for sural nerve biopsy, no longer necessary in the diagnostic process, to study genotype–phenotype correlations. 
  • 1.0K
  • 15 Apr 2021
Topic Review
Cisplatin-Induced Peripheral Neuropathy
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics.
  • 1.0K
  • 15 Apr 2021
  • Page
  • of
  • 14
Academic Video Service