You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Hydrometallurgy of Lithium Batteries
Spent lithium batteries can cause pollution to the soil and seriously threaten the safety and property of people. They contain valuable metals, such as cobalt and lithium, which are nonrenewable resources, and their recycling and treatment have important economic, strategic, and environmental benefits. The hydrometallurgy process uses reagents such as hydrochloric acid (HCl), nitric acid (HNO3), sulfuric acid (H2SO4), phosphoric acid (H3PO4), organic acids, and hydrogen peroxide (H2O2) to extract and separate the cathode metals, usually operating below 100 °C, and can recover lithium in addition to the other transition metals.
  • 6.1K
  • 15 Mar 2022
Topic Review
Li7La3Zr2O12 (LLZO): An Overview
Li7La3Zr2O12 (LLZO) is an inorganic garnet type solid electrolyte which has proven to be one of the most promising electrolytes because of its high ionic conductivity at room temperature, low activation energy, good chemical and electrochemical stability, and wide potential window.
  • 6.1K
  • 03 Aug 2021
Topic Review
Insulated Cross-Arm Technology
High-voltage transmission technology has advanced quickly with the overall development and increased use of renewable energy. More demands on the insulating system are made when high-voltage power systems evolve. One of the significant factors is the sharp rise in population density, which led to the high demand for electricity. Right-of-way infringement is a problem that frequently occurs these days. Transmission is done over a rated capacity; as a result, the transmission line heats up, the insulation ages, and the electric field becomes distorted. The insulating system is prone to fail too soon when the operating voltage inverses or when there is a significant temperature differential.
  • 6.0K
  • 18 Nov 2022
Topic Review
Sensors for Emotion Recognition
The rapid development of sensors and information technology has made it possible for machines to recognize and analyze human emotions. Emotion recognition is an important research direction in various fields. Human emotions have many manifestations. Therefore, emotion recognition can be realized by analyzing facial expressions, speech, behavior, or physiological signals. These signals are collected by different sensors. Correct recognition of human emotions can promote the development of affective computing. 
  • 5.9K
  • 13 Mar 2023
Topic Review
Virtual Power Plants (VPPs)
A virtual power plants (VPPs) is an alternative for the management of Distributed Energy Resources (DER) in the electricity system, which operates based on the concept of the “virtual cloud”. Its specific role is visibility and the technical and commercial integration of DERs in the power system. It is capable of grouping and managing the technical potential of different DERs (microgrids included), regardless of the voltage level at which they are interconnected with the network and without a geographical restriction between the elements. It is modeled as a single virtual element associated with the distribution network to guarantee a safe, efficient, cooperative and complementary operation between its elements, both in commercial and technical aspects. The VPP has the capacity to participate in the electricity market as a manager of controllable loads and as a provider of energy, power reserve and ancillary services.
  • 5.9K
  • 18 Feb 2022
Topic Review
Microgrid and Its Architecture
The world today is plagued with problems of increased transmission and distribution (T&D) losses leading to poor reliability due to power outages and an increase in the expenditure on electrical infrastructure. To address these concerns, technology has evolved to enable the integration of renewable energy sources (RESs) like solar, wind, diesel and biomass energy into small scale self-governing power system zones which are known as micro-grids (MGs). A de-centralised approach for modern power grid systems has led to an increased focus on distributed energy resources and demand response. MGs act as complete power system units albeit on a small scale. However, this does not prevent them from large operational sophistication allowing their independent functioning in both grid-connected and stand-alone modes. MGs provide greater reliability as compared to the entire system owing to the large amount of information secured from the bulk system. They comprise numerous sources like solar, wind, diesel along with storage devices and converters. Several modeling schemes have been devised to reduce the handling burden of large scale systems. 
  • 5.8K
  • 18 Jan 2022
Topic Review
ATtiny Microcontroller Comparison Chart
ATtiny (also known as TinyAVR) are a subfamily of the popular 8-bit AVR microcontrollers, which typically has fewer features, fewer I/O pins, and less memory than other AVR series chips. The first members of this family were released in 1999 by Atmel (later acquired by Microchip Technology in 2016).
  • 5.8K
  • 03 Nov 2022
Topic Review
RealSense Depth Sensors
RealSense technology comprises a microprocessor for image processing, a module for creating depth images, an IR emitter, a segment for tracking movements, and depth sensors.
  • 5.7K
  • 09 Mar 2022
Topic Review
Gallium Nitride High-Electron-Mobility Transistor
In recent years, GaN-based devices have been widely used in a variety of application fields. GaN-based high-electron-mobility transistors (HEMTs) are superior to conventional silicon (Si) based devices in terms of switching frequency, power rating, thermal capability and efficiency, which are crucial factors to enhance the performances of advanced power converters. This paper addresses some fundamental issues concerning intrinsic features of GaN material and key technology in practical application of GaN-based power switching devices.
  • 5.7K
  • 30 Jul 2020
Topic Review
Silicon Carbide Power MOSFET
Owing to the superior properties of silicon carbide (SiC), such as higher breakdown voltage, higher thermal conductivity, higher operating frequency, higher operating temperature, and higher saturation drift velocity, SiC has attracted much attention from researchers and the industry for decades. With the advances in material science and processing technology, many power applications such as new smart energy vehicles, power converters, inverters, and power supplies are being realized using SiC power devices. In particular, SiC MOSFETs are generally chosen to be used as a power device due to their ability to achieve lower on-resistance, reduced switching losses, and high switching speeds than the silicon counterpart and have been commercialized extensively in recent years. 
  • 5.6K
  • 21 Mar 2022
Topic Review
CubeSat Missions and Their Antenna Designs
CubeSats are a class of miniaturized satellites that have become increasingly popular in academia and among hobbyists due to their short development time and low fabrication cost. Their compact size, lightweight characteristics, and ability to form a swarm enables them to communicate directly with one another to inspire new ideas on space exploration, space-based measurements, and implementation of the latest technology. CubeSat missions require specific antenna designs in order to achieve optimal performance and ensure mission success. Over the past, a plethora of antenna designs have been proposed and implemented on CubeSat missions. Several challenges arise when designing CubeSat antennas such as gain, polarization, frequency selection, pointing accuracy, coverage, and deployment mechanisms.
  • 5.6K
  • 18 Jul 2022
Topic Review
Flat Panel Display
Flat-panel displays are electronic viewing technologies used to enable people to see content (still images, moving images, text, or other visual material) in a range of entertainment, consumer electronics, personal computer, and mobile devices, and many types of medical, transportation and industrial equipment. They are far lighter and thinner than traditional cathode ray tube (CRT) television sets and video displays and are usually less than 10 centimetres (3.9 in) thick. Flat-panel displays can be divided into two display device categories: volatile and static. Volatile displays require that pixels be periodically electronically refreshed to retain their state (e.g., liquid-crystal displays (LCD)). A volatile display only shows an image when it has battery or AC mains power. Static flat-panel displays rely on materials whose color states are bistable (e.g., e-book reader tablets from Sony), and as such, flat-panel displays retain the text or images on the screen even when the power is off. As of 2016, flat-panel displays have almost completely replaced old CRT displays. In many 2010-era applications, specifically small portable devices such as laptops, mobile phones, smartphones, digital cameras, camcorders, point-and-shoot cameras, and pocket video cameras, any display disadvantages of flat-panels (as compared with CRTs) are made up for by portability advantages (thinness and lightweightness). Most 2010s-era flat-panel displays use LCD and/or LED technologies. Most LCD screens are back-lit as color filters are used to display colors. Flat-panel displays are thin and lightweight and provide better linearity and they are capable of higher resolution than typical consumer-grade TVs from earlier eras. The highest resolution for consumer-grade CRT TVs was 1080i; in contrast, many flat-panels can display 1080p or even 4K resolution. As of 2016, some devices that use flat-panels, such as tablet computers, smartphones and, less commonly, laptops, use touchscreens, a feature that enables users to select onscreen icons or trigger actions (e.g., playing a digital video) by touching the screen. Many touchscreen-enabled devices can display a virtual QWERTY or numeric keyboard on the screen, to enable the user to type words or numbers. A multifunctional monitor (MFM) is a flat-panel display that has additional video inputs (more than a typical LCD monitor) and is designed to be used with a variety of external video sources, such as VGA input, HDMI input from a VHS VCR or video game console and, in some cases, a USB input or card reader for viewing digital photos). In many instances, an MFM also includes a TV tuner, making it similar to a LCD TV that offers computer connectivity.
  • 5.5K
  • 25 Nov 2022
Topic Review
Autonomous Navigation
Autonomous navigation is a very important area in the huge domain of mobile autonomous vehicles.  Sensor integration is a key concept that is critical to the successful implementation of navigation.  As part of this publication, we review the integration of Laser sensors like LiDAR with vision sensors like cameras.  The past decade, has witnessed a surge in the application of sensor integration as part of smart-autonomous mobility systems. Such systems can be used in various areas of life like safe mobility for the disabled, disinfecting hospitals post Corona virus treatments, driver-less vehicles, sanitizing public areas, smart systems to detect deformation of road surfaces, to name a handful.  These smart systems are dependent on accurate sensor information in order to function optimally. This information may be from a single sensor or a suite of sensors with the same or different modalities. We review various types of sensors, their data, and the need for integration of the data with each other to output the best data for the task at hand, which in this case is autonomous navigation. In order to obtain such accurate data, we need to have optimal technology to read the sensor data, process the data, eliminate or at least reduce the noise and then use the data for the required tasks. We present a survey of the current data processing techniques that implement integration of multimodal data from different types of sensors like LiDAR that use light scan technology, various types of Red Green Blue (RGB) cameras that use optical technology and review the efficiency of using fused data from multiple sensors rather than a single sensor in autonomous navigation tasks like mapping, obstacle detection, and avoidance or localization. This survey will provide sensor information to researchers who intend to accomplish the task of motion control of a robot and detail the use of LiDAR and cameras to accomplish robot navigation
  • 5.4K
  • 30 Oct 2020
Topic Review
Talkboy
Talkboy is a line of handheld voice recorder and sound novelty toys manufactured by Tiger Electronics (now owned by Hasbro) in the 1990s. The Talkboy was originally conceived as a cassette recorder and player prop for the 1992 film Home Alone 2: Lost in New York. At the request of director John Hughes and 20th Century Fox, Tiger designed and built the prop, and was given permission by the movie studio to sell a retail version of the toy. Two cassette recorders modeled after the film prop were released in 1992 and 1993, respectively. The original model did not have the variable-speed voice changer of the film version and sold only moderately during the 1992 holiday shopping season. In April 1993, Tiger released the Deluxe model, which added the voice-changing feature. Following the release of Home Alone 2 on home video in July with an insert advertising the Deluxe Talkboy, interest in the toy spiked. Retailers had severely underestimated demand, and as a result the Deluxe Talkboy was one of the most highly sought-after toys during the 1993 holiday shopping season, selling out of stores across the United States. A pink version of the cassette recorder called "Deluxe Talkgirl" was released in 1995. The success of the Talkboy cassette recorders spawned a product line of electronic toys. Tiger transitioned to digital recorders for subsequent devices, using solid-state storage and adding sound effects, beginning with "Talkboy/Talkgirl F/X+" pens in 1995, which sold more than a million units in 45 days.
  • 5.4K
  • 29 Nov 2022
Topic Review
Ethical Dilemmas in Emerging Technologies
Emerging technologies have featured prominently in the research on technology ethics, which is progressively concentrating on early-stage intervention in technological innovation. Techno Ethics (TE) serves as a multidisciplinary research field that incorporates theories and techniques from various domains including communications systems, sociology, innovation, ethical theories, and principles. Cybercrime is an umbrella term for all illicit activities made possible by access to an IT infrastructure including unauthorized access, unlawful data comparison interception, system disruption, digital identity fraud, etc. The goal of cybersecurity (counterpart to cybercrime) is to assist people in mitigating risks in their systems, networks, and data, ensuring security and privacy. To secure cyberspace, formal and informal resources, including equipment, people, infrastructure, services, policies, training, and technologies are used. As more firms post details to demonstrate their public commitment to ethical ideals while promoting security, discussions regarding ethical standards for emerging technologies are becoming more common. 
  • 5.4K
  • 13 Feb 2023
Topic Review
Preparation of Nanofluids
There are two different ways of preparing nanofluids categorized in a one-step process and a two-step process. The origin of the word “nanofluid” is connected with the work by Choi et al. back in 1995, where they researched enhancement of thermal conductivity of fluids mixed with nanoparticles, determined the direction of further research, described the theoretical study of these fluids, and set potential benefits of nanofluids. From that point, the number of scientific papers that deal with nanofluids has been exponentially increasing. 
  • 5.3K
  • 22 Nov 2021
Topic Review
Amperometric Biosensors
Amperometric biosensors utilizing oxidoreductases were classified into three generations: 1st generation biosensors employing oxidases based on the electrocatalytic monitoring of substrate consumption or product formation, 2nd generation biosensors employing oxidases or dehydrogenases based on the electrocatalytic recycling of suitable redox mediators, and 3rd generation biosensors employing oxidoreductases capable of direct electron transfer to bare or modified electrodes.
  • 5.2K
  • 16 Aug 2021
Topic Review
Physical Unclonable Function
A Physical Unclonable Function (PUF) is hardware that acts as a one-way function, whose each different instance provides unique outputs for the same distinct input. Although recent research has demonstrated the merits of PUFs as security primitives for resource-constrained computer systems, better implementations of them need to be identified by future research, in order for them to be commercially adopted. Nevertheless, PUFs have already found application in the implementation of a large number of cryptographic protocols and other security solutions. A number of well-known metrics have been proposed in the literature in order to assess the quality of individual PUF implementations as security mechanisms, in terms of the stability, uniqueness and randomness of their responses.
  • 5.0K
  • 24 Mar 2023
Topic Review
Recent Trends in Copper Metallization
The Cu/low-k damascene process was introduced to alleviate the increase in the RC delay of Al/SiO2 interconnects, but now that the technology generation has reached 1× nm or lower, a number of limitations have become apparent. Due to the integration limit of low-k materials, the increase in the RC delay due to scaling can only be suppressed through metallization.
  • 5.0K
  • 28 Sep 2022
Topic Review
Submarine Cables Radial Water Barrier
The submarine cables manufacturing industry is growing very rapidly. Solutions used so far, usually adapted from designs of land cables, do not fulfil the new, more demanding requirements. The phenomenon of water ingress into insulation and its absorption are basic factors determining the service life of submarine cables. The radial water barrier is the only effective component of cable design that may guarantee the required minimum 30-year longevity of submarine cables.
  • 4.8K
  • 01 Jun 2021
  • Page
  • of
  • 50
Academic Video Service