You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Techniques for Dealcoholization of Wines
To adapt to the trends in wine styles, and the effect of climate change on wine alcohol content, different techniques have been used at the various stages of winemaking, among which the physical dealcoholization techniques, particularly membrane separation (nanofiltration, reverse osmosis, evaporative perstraction, and pervaporation) and thermal distillation (vacuum distillation and spinning cone column), have shown promising results and hence are being used for commercial production.
  • 3.0K
  • 29 Oct 2021
Topic Review
Horizontal transfer of Resistance Genes
Emergence and rapid spread of antibiotic resistance has posed a serious threat to public health and undermined decades of progress made in the fight against bacterial infections. Plasmid-mediated horizontal tranfer of antibiotic resistance genes (ARGs) has been recognized as the most dominant dissemination pathway of ARGs in humans, animals and environmental settings. In particular, four pathways including conjugation, transformation, transduction and vesiduction account for horizontal transfer of antibiotic resistance genes. A better understanding of these pathways and underlying mechanisms would contribute to developing more effective stategies to control the prevalence of ARGs.
  • 3.0K
  • 14 Aug 2020
Topic Review
Oleaginous Yeasts
The production of lipids from oleaginous yeasts involves several stages starting from cultivation and lipid accumulation, biomass harvesting and finally lipids extraction. However, the complex and relatively resistant cell wall of yeasts limits the full recovery of intracellular lipids and usually solvent extraction is not sufficient to effectively extract the lipid bodies. A pretreatment or cell disruption method is hence a prerequisite prior to solvent extraction. In general, there are no recovery methods that are equally efficient for different species of oleaginous yeasts.
  • 2.9K
  • 08 Feb 2021
Topic Review
Fission
Fission, in biology, is the division of a single entity into two or more parts and the regeneration of those parts to separate entities resembling the original. The object experiencing fission is usually a cell, but the term may also refer to how organisms, bodies, populations, or species split into discrete parts. The fission may be binary fission, in which a single organism produces two parts, or multiple fission, in which a single entity produces multiple parts.
  • 2.9K
  • 21 Nov 2022
Topic Review
Equine Piroplasmosis
Equine piroplasmosis (EP), caused by the hemoparasites Theileria equi, Theileria haneyi, and Babesia caballi, is an important tick-borne disease of equines that is prevalent in most parts of the world. Infection may affect animal welfare and has economic impacts related to limitations in horse transport between endemic and non-endemic regions, reduced performance of sport horses and treatment costs.
  • 2.9K
  • 26 Nov 2020
Topic Review Peer Reviewed
Modulation of the Host Defence System by Nematophagous Fungi and Chitosan
Nematophagous fungi (NFs), which are responsible for soil suppression of plant-parasitic nematodes, are multitrophic biocontrol agents. This raises the question of the transition between lifestyles (e.g., endophytism vs. egg parasitism). The NF Pochonia chlamydosporia colonises food crops and promotes their growth and yield. When colonising the plant, P. chlamydosporia induces the plant immunity (PI). However, it also evades the PI. To do this, both endophytic NF and pathogenic fungi (PF) secrete LysM effectors (LysM-effs). LysM effectors have been shown to have diverse functions in different organisms, including the protection of fungal chitin from plant chitinases. P. chlamydosporia is resistant to chitosan, which modulates gene expression in fungi and plants and has antimicrobial properties. P. chlamydosporia chitin deacetylases (CDA) and chitosanases (CSN) also help P. chlamydosporia evade plant immunity, resist exogenous chitosan, and are induced during fungal infection of nematode eggs. NF-chitosan formulations are new biomanagement tools against plant parasitic nematodes, fungal wilt pathogens and insect pests that currently threaten food security crops. Furthermore, omics techniques are useful tools to elucidate the role of CDAs, CSNs, LysM-effs, adhesion proteins and carbohydrate-active enzymes in pathogen–BCA–plant interactions, adhesion and infection to nematode eggs and their modulation by chitosan.
  • 2.9K
  • 21 Feb 2024
Topic Review
Microcystins
Harmful cyanobacterial blooms pose an environmental health hazard due to the release of water-soluble cyanotoxins. One of the most prevalent cyanotoxins in nature is microcystins (MCs), a class of cyclic heptapeptide hepatotoxins, and they are produced by several common cyanobacteria in aquatic environments. Once released from cyanobacterial cells, MCs are subjected to physical chemical and biological transformations in natural environments. MCs can also be taken up and accumulated in aquatic organisms and their grazers/predators and induce toxic effects in several organisms, including humans.
  • 2.9K
  • 14 Sep 2021
Topic Review
Proteomics for Studying Antibiotic Action
To design more efficient treatments against bacterial infections, detailed knowledge about the bacterial response to the commonly used antibiotics is required. Proteomics is a well-suited and powerful tool to study molecular response to antimicrobial compounds. Bacterial response profiling from system-level investigations could increase our understanding of bacterial adaptation, the mechanisms behind antibiotic resistance and tolerance development.
  • 2.9K
  • 03 Nov 2020
Topic Review
Genome Editing in Bacteria
Genome editing in bacteria encompasses a wide array of laborious and multi-step methods such as suicide plasmids. The discovery and applications of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas based technologies have revolutionized genome editing in eukaryotic organisms due to its simplicity and programmability. 
  • 2.9K
  • 26 May 2021
Topic Review
Acidobacteria
Acidobacteria is a phylum of bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.
  • 2.9K
  • 29 Nov 2022
Topic Review
Lactic Acid Fermentation on Food
The microbial and biochemical changes in different fermented foods due to the fermenting microorganisms. It has been a matter of study because it contributes to the enhancement of nutritional content in fermented foods due to various fermenting microorganisms that results in the modifications of foods ecosystems like on flavour, rheology, and shelf-life, as well as on the functional/nutritional characteristics of the foods. Fermentation technique has been used for centuries to upgrade food materials and to formulate a more acceptable product. It helps in the successful degradation of anti-nutritive compounds present in the fermented foods thus making it safe and consumable. This entry will help to know more about the potential of fermented foods to increase substantially the nutritional value of the world's most abundant food resources. The fermentation process has converted the unpalatable food materials into attractive and nutritious foods to add variety and flavour to monotonous staple dishes. It also enhances the nutritional value of foods in terms of vitamins, antioxidants, volatile compounds and minerals, etc. This entry may promote microbial and biochemical changes in fermented foods in a broad manner that helps to understand the overall beneficial effect of microorganisms on fermented foods. 
  • 2.9K
  • 13 Dec 2020
Topic Review
Bacterial Resistance to Antimicrobial Agents
Bacterial pathogens as causative agents of infection constitute an alarming concern in the public health sector. In particular, bacteria with resistance to multiple antimicrobial agents can confound chemotherapeutic efficacy towards infectious diseases. Multidrug-resistant bacteria harbor various molecular and cellular mechanisms for antimicrobial resistance. These antimicrobial resistance mechanisms include active antimicrobial efflux, reduced drug entry into cells of pathogens, enzymatic metabolism of antimicrobial agents to inactive products, biofilm formation, altered drug targets, and protection of antimicrobial targets. These microbial systems represent suitable focuses for investigation to establish the means for their circumvention and to reestablish therapeutic effectiveness.
  • 2.9K
  • 01 Aug 2022
Topic Review
Resistance in Powdery Mildew Fungi
Powdery mildew fungi (Erysiphales) are among the most common and important plant fungal pathogens. These fungi are obligate biotrophic parasites that attack nearly 10,000 species of angiosperms, including major crops, such as cereals and grapes. Although cultural and biological practices may reduce the risk of infection by powdery mildew, they do not provide sufficient protection. Therefore, in practice, chemical control, including the use of fungicides from multiple chemical groups, is the most effective tool for managing powdery mildew. Unfortunately, the risk of resistance development is high because typical spray programs include multiple applications per season. In addition, some of the most economically destructive species of powdery mildew fungi are considered to be high-risk pathogens and are able to develop resistance to several chemical classes within a few years. This situation has decreased the efficacy of the major fungicide classes, such as sterol demethylation inhibitors, quinone outside inhibitors and succinate dehydrogenase inhibitors, that are employed against powdery mildews.
  • 2.9K
  • 25 Sep 2020
Topic Review
Mechanisms of Antibiotic Resistance
Bacteria can exhibit two types of antibiotic resistance: intrinsic and acquired. While intrinsic resistance is determined by naturally occurring mechanisms conferred by inherent structural and/or functional features of the bacteria, the acquired resistance results from the changes in the bacterial genome. These consist of mutations in antibiotic-targeted genes or the acquisition of exogenous DNA conferring resistance, horizontally transferred by plasmids, bacteriophages, transposons, or other mobile genetic elements. Many independent mechanisms of bacterial resistance to antibiotics have been identified, including primarily modification of the antibiotic target, changes in the cell envelope’s permeability, active pumping of the antibiotic out of the cell (so-called efflux system), and enzymatic inactivation.
  • 2.9K
  • 25 Apr 2023
Topic Review
Trypanosomatid Pathogens
Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they caused requires the sampling of body fluids (blood, lymph, peritoneal fluid, cerebrospinal fluid, etc.) or organ biopsies (bone marrow, spleen, etc.), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but their appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials.
  • 2.8K
  • 29 Oct 2020
Topic Review
Endophytic Fungi
An extensive literature search was performed to review current knowledge about endophytic fungi isolated from plants included in the European Food Safety Authority (EFSA) dossier. The selected genera of plants were Acacia, Albizia, Bauhinia, Berberis, Caesalpinia, Cassia, Cornus, Hamamelis, Jasminus, Ligustrum, Lonicera, Nerium, and Robinia. A total of 120 fungal genera have been found in plant tissues originating from several countries. Bauhinia and Cornus showed the highest diversity of endophytes, whereas Hamamelis, Jasminus, Lonicera, and Robinia exhibited the lowest. The most frequently detected fungi were Aspergillus, Colletotrichum, Fusarium, Penicillium, Phyllosticta, and Alternaria. Plants and plant products represent an inoculum source of several mutualistic or pathogenic fungi, including quarantine pathogens. Thus, the movement of living organisms across continents during international trade represents a serious threat to ecosystems and biosecurity measures should be taken at a global level.
  • 2.8K
  • 19 Jan 2021
Topic Review
Table olives microbiota
Table olives fermentation is the result of a complex set of dynamics involving diverse microbial populations such as lactic acid bacteria, yeasts and moulds. Their metabolic activities determine the characteristics such as flavour, texture and safety of the final product. This chapter offers an overview on the main microbiota characterizing table olives and their role during fermentation.
  • 2.8K
  • 01 Jul 2020
Topic Review
Antimicrobial Blue Light
Blue light primarily exhibits antimicrobial activity through the activation of endogenous photosensitizers, which leads to the formation of reactive oxygen species that attack components of bacterial cells, such as cell wall, cell membrane and genome. Current data show that blue light is innocuous on the skin, but may inflict photo-damage to the eyes. While complete resistance to blue light has not been reported, isolated evidence suggests that bacterial tolerance to blue light may occur over time, especially through gene mutations, although at a slower rate than antibiotic resistance. Future studies can aim at characterizing the amount and type of intracellular photosensitizers across bacterial species and at assessing the oxygen-independent mechanism of blue light.
  • 2.8K
  • 11 Jan 2021
Topic Review
Lignans
This entry focuses on lignans, a non-flavonoid polyphenolic class found in plant foods for human nutrition, recently studied as potential modulators of the gut-brain axis. In particular, gut bacterial metabolism is able to convert dietary lignans into therapeutically relevant polyphenols (i.e., enterolignans), such as enterolactone and enterodiol. Enterolignans are characterized by various biologic activities, including tissue-specific estrogen receptor activation, together with anti-inflammatory and apoptotic effects. The variability in enterolignans production by the gut microbiota is strictly related to both bioaccessibility and bioavailability of parent lignans through the entire gastrointestinal tract. 
  • 2.8K
  • 06 Jan 2021
Topic Review
Lactic Acid Bacteria
The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables.
  • 2.8K
  • 26 Oct 2020
  • Page
  • of
  • 51
Academic Video Service