You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Trypsin Induced Degradation of Amyloids
Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids.
  • 1.4K
  • 15 Jun 2021
Topic Review
Effect of Anthocyanins on Neurological Disorders
Anthocyanins are a type of flavonoids that give plants and fruits their vibrant colors. They are known for their potent antioxidant properties and have been linked to various health benefits. Due to their ability to modulate mechanisms implicated in the onset of neurological diseases, anthocyanins hold significant potential for treating such conditions.
  • 1.4K
  • 14 Nov 2023
Topic Review
A2B Adenosine Receptors
Adenosine is a signalling molecule which, by activating specific membrane receptors, acts as an important player during brain insults such as ischemia. or demyelinating injuries. Here we review data in the literature describing A2B receptor-mediated effects in preclinical in vitro and in vivo models of cerebral ischemia and myelination that point to A2B receptor ligands as putative therapeutic targets for the still unmet treatment of stroke or demyelinating diseases.
  • 1.4K
  • 14 Apr 2021
Topic Review
Eukaryotic Cell
Eukaryotic cells, are complex cells that evolved through endosymbiosis when one cell (typically bacterial, forming mitochondria and plastids) is incorporated by a host cell. It might well be that other cellular organelles are also of endosymbiotic nature. 
  • 1.4K
  • 18 Mar 2021
Topic Review
Histone Post-Translational Modifications
The emergence of a nucleosome-based chromatin structure accompanied the evolutionary transition from prokaryotes to eukaryotes. In this scenario, histones became the heart of the complex and precisely timed coordination between chromatin architecture and functions during adaptive responses to environmental influence by means of epigenetic mechanisms. Notably, such an epigenetic machinery involves an overwhelming number of post-translational modifications at multiple residues of core and linker histones. 
  • 1.4K
  • 17 Nov 2021
Topic Review
Role of p300 and Tumours
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism.
  • 1.4K
  • 13 Mar 2023
Topic Review
Proteostasis and Proteotoxicity in Network Medicine Era
Neurodegenerative proteinopathies are complex diseases that share some pathogenetic processes. One of these is the failure of the proteostasis network (PN), which includes all components involved in the synthesis, folding, and degradation of proteins, thus leading to the aberrant accumulation of toxic protein aggregates in neurons. The single components that belong to the three main modules of the PN are highly interconnected and can be considered as part of a single giant network.
  • 1.4K
  • 05 Mar 2024
Topic Review
Vitamins B1, B3 and B6 in Charcot–Marie–Tooth Disease
The molecular mechanisms of Charcot–Marie–Tooth (CMT) disease, involving impaired vitamin metabolism and/or actions, are considered in light of the potential therapeutic actions of vitamins B1, B3 and B6 in the disease.
  • 1.4K
  • 27 Jun 2023
Topic Review
BDNF expression in GABAergic interneurons
Brain-derived neurotrophic factor (BDNF) is a major neuronal growth factor that is widely expressed in the central nervous system. It is synthesized as a glycosylated precursor protein, (pro)BDNF and post-translationally converted to the mature form, (m)BDNF. BDNF is known to be produced and secreted by cortical glutamatergic principal cells (PCs); however, it remains a question whether it can also be synthesized by other neuron types, in particular, GABAergic interneurons (INs). Therefore, we utilized immunocytochemical labeling and reverse transcription quantitative PCR (RT-qPCR) to investigate the cellular distribution of proBDNF and its RNA in glutamatergic and GABAergic neurons of the mouse cortex. Immunofluorescence labeling revealed that mBDNF, as well as proBDNF, localized to both the neuronal populations in the hippocampus. The precursor proBDNF protein showed a perinuclear distribution pattern, overlapping with the rough endoplasmic reticulum (ER), the site of protein synthesis. RT-qPCR of samples obtained using laser capture microdissection (LCM) or fluorescence-activated cell sorting (FACS) of hippocampal and cortical neurons further demonstrated the abundance of BDNF transcripts in both glutamatergic and GABAergic cells. Thus, our data provide compelling evidence that BDNF can be synthesized by both principal cells and INs of the cortex.
  • 1.4K
  • 26 Oct 2020
Topic Review
Structural Class of ARS Inhibitors
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to tRNAs and translate the genetic code during protein synthesis. Their function in pathogen-derived infectious diseases has been well established, which has led to the development of small molecule therapeutics. The applicability of ARS inhibitors for other human diseases, such as fibrosis, has recently been explored in the clinical setting. There are active studies to find small molecule therapeutics for cancers.
  • 1.4K
  • 13 Jan 2021
Topic Review
Generalities about AB Toxins
AB toxins exhibit a protein structure, consisting of two distinct domains: a targeting domain and a catalytic (toxic) domain. Over time, these toxins have evolved into highly efficient carriers adept at delivering their catalytic domain into cells. The use of biotechnology to manipulate these proteins facilitates the development of potent and exquisitely precise protein ligands designed to specifically target cell surface receptors associated with cancer and deliver treatments in to these cells. Two noteworthy examples of such toxins are the Shiga toxin and the Anthrax toxin.
  • 1.4K
  • 24 Oct 2023
Topic Review
Cancer Cell Fusion
"A major challenge in treating cancer is posed by intratumor heterogeneity, with different sub-populations of cancer cells within the same tumor exhibiting therapy resistance through different biological processes. These include therapy-induced dormancy, apoptosis reversal (anastasis), and cell fusion. Unfortunately, such responses are often overlooked or misinterpreted as “death” in commonly used preclinical assays.This entry highlights the dark side of cell fusion in metastasis and therapy resistance of solid tumors."
  • 1.4K
  • 27 Oct 2020
Topic Review
Centipede Toxins Acting on the Nervous System
Centipedes are typical venomous arthropods that rely on their toxins primarily for predation and defense. Venoms are a complex cocktail of biologically active molecules, including peptides, proteins, polyamide, and enzymes widely produced by venomous organisms. Through long-term evolution, venomous animals have evolved highly specific and diversified peptides and proteins targeting key physiological elements, including the nervous system.
  • 1.4K
  • 22 Aug 2022
Topic Review
Static Osteogenesis versus Dynamic Osteogenesis
Static (SO) and dynamic (DO) osteogenesis are two very different types of osteogenesis, which are thus named because the former is characterized by pluristratified cords of unexpectedly stationary osteoblasts which differentiate at a fairly constant distance from the blood capillaries and transform into osteocytes without moving from the onset site, while the latter is distinguished by the well-known typical monostratified laminae of movable osteoblasts, which secrete bone moving towards the vessels.
  • 1.4K
  • 25 Mar 2021
Topic Review
Proton Transport Chain
Carboxylic acids dissociate in water to carboxylates (R-COO-) and oxonium (H+[H2O]n) ions. The Proton Transport Chain (PTC) hypothesis asserts that enzyme complexes bridge nascent acids and ensure water-free transfer of the intermediate substrate. The PTC hypothesis entails that the concentration of the transferred acid is mathematically infinite and an infinite concentration drives enzymatic reactions unidirectionally. In support of this, a number of enzymes, such as proton-linked monocarboxylate transporters (MCTs), lactate dehydrogenases (LDHs) or sodium/hydrogen exchangers have been experimentally determined to catalyse unidirectionally. In addition, enzyme complexes, such as the pyruvate dehydrogenase complex (PDHc), are also known to catalyse unidirectionally. Scientific concepts, such as the original Citric Acid Cycle proposed that acids are metabolized in a clockwise direction. The PTC hypothesis provides mechanisms, mathematics and law of nature for biological processes.
  • 1.4K
  • 26 Feb 2021
Topic Review
E3 Ligases in Muscle Atrophy
Skeletal muscle loss is a detrimental side-effect of numerous chronic diseases that dramatically increases mortality and morbidity. The alteration of protein homeostasis is generally due to increased protein breakdown while, protein synthesis may also be down-regulated. The ubiquitin proteasome system (UPS) is a master regulator of skeletal muscle that impacts muscle contractile properties and metabolism through multiple levers like signaling pathways, contractile apparatus degradation, etc. Among the different actors of the UPS, the E3 ubiquitin ligases specifically target key proteins for either degradation or activity modulation, thus controlling both pro-anabolic or pro-catabolic factors. The atrogenes MuRF1/TRIM63 and MAFbx/Atrogin-1 encode for key E3 ligases that target contractile proteins and key actors of protein synthesis respectively. However, several other E3 ligases are involved upstream in the atrophy program, from signal transduction control to modulation of energy balance. Controlling E3 ligases activity is thus a tempting approach for preserving muscle mass.
  • 1.4K
  • 31 May 2021
Topic Review
5-Hydroxytryptamine and Gut
Serotonin, also known as 5-hydroxytryptamine (5-HT), is a metabolite of tryptophan and is reported to modulate the development and neurogenesis of the enteric nervous system, gut motility, secretion, inflammation, sensation, and epithelial development. Approximately 95% of 5-HT in the body is synthesized and secreted by enterochromaffin (EC) cells, the most common type of neuroendocrine cells in the gastrointestinal (GI) tract, through sensing signals from the intestinal lumen and the circulatory system. Gut microbiota, nutrients, and hormones are the main factors that play a vital role in regulating 5-HT secretion by EC cells. Apart from being an important neurotransmitter and a paracrine signaling molecule in the gut, gut-derived 5-HT was also shown to exert other biological functions (in autism and depression) far beyond the gut. Moreover, studies conducted on the regulation of 5-HT in the immune system demonstrated that 5-HT exerts anti-inflammatory and proinflammatory effects on the gut by binding to different receptors under intestinal inflammatory conditions. Understanding the regulatory mechanisms through which 5-HT participates in cell metabolism and physiology can provide potential therapeutic strategies for treating intestinal diseases. Herein, we review recent evidence to recapitulate the mechanisms of synthesis, secretion, regulation, and biofunction of 5-HT to improve the nutrition and health of humans.
  • 1.4K
  • 17 Aug 2021
Topic Review
Hepatitis B and Hepatitis D Viruses
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12–72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality.
  • 1.4K
  • 26 Dec 2022
Topic Review
Serum lipidomics in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. Changes in the lipid profile at a molecular level in RA are still poorly understood. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid profile, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.
  • 1.4K
  • 15 Jan 2021
Topic Review
Glycerol Phosphate-Containing Glycan in Mammals
Bacteria contain glycerol phosphate (GroP)-containing glycans, which are important constituents of cell-surface glycopolymers such as the teichoic acids of Gram-positive bacterial cell walls. These glycopolymers comprising GroP play crucial roles in bacterial physiology and virulence. Recently, the first identification of a GroP-containing glycan in mammals was reported as a variant form of O-mannosyl glycan on α-dystroglycan (α-DG). However, the biological significance of such GroP modification remains largely unknown.
  • 1.4K
  • 15 Nov 2021
  • Page
  • of
  • 133
Academic Video Service