You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Power Electronics Revolutionized
Key parameters examined include bandgap, critical electric field, electron mobility, voltage/current ratings, switching frequency, and device packaging. The historical evolution of each material is traced from early research devices to current commercial offerings. Significant focus is given to SiC and GaN as they are now actively competing with Si devices in the market, enabled by their higher bandgaps.
  • 1.2K
  • 13 Nov 2023
Topic Review
Ionic Liquid Electrolytes
For decades, improvements in electrolytes and electrodes have driven the development of electrochemical energy storage devices. Generally, electrodes and electrolytes should not be developed separately due to the importance of the interaction at their interface. The energy storage ability and safety of energy storage devices are in fact determined by the arrangement of ions and electrons between the electrode and the electrolyte.
  • 1.2K
  • 03 Aug 2021
Topic Review
Control System of Wind Diesel Hybrid Systems
In regions with high renewable energy sources (RES) potential, hybrid energy systems based on diesel generators (DG) and RES are used providing diesel fuel economy. Wind diesel hybrid systems (WDHS) and wind solar diesel hybrid systems (WSDHS) are mostly widespread. The WDHS control system should select the system’s optimum operation, providing the maximum use of wind power within the whole range of wind speeds and load power. The current algorithms and control methods of WDHS and integrated WT, providing optimal scheduling and diesel fuel economy. WDHS use energy management system (EMS) and algorithms, maintaining frequency and voltage values in the system. WT control systems are used prediction methods of wind turbine (WT) energy generation, algorithms of the maximum power point tracker (MPPT) and optimal operation selection. The optimization methods of energy storage systems (ESS) charge/discharge modes are used as well.
  • 1.2K
  • 10 Jan 2023
Topic Review
Wearable Sensing Systems
Wearable devices are powerful tools for supporting IoT systems because of their sensing, processing, and communication capability. The term wearable devices cover a wide range of products integrated into clothing and accessories worn by the user and constantly connected to other intelligent electronic systems and the Internet network, allowing the detection, storage, and exchange of data in real-time and without human intervention. Particularly, they allow detection of patients’ vital parameters (e.g., heart rate (HR), oxygen saturation- (SpO2), body temperature, blood pressure (BP), etc.)
  • 1.2K
  • 13 Aug 2021
Topic Review
Tactile and Force Sensors for Human–Machine Interaction
Human–Machine Interface (HMI) plays a key role in the interaction between people and machines, which allows people to easily and intuitively control the machine and immersively experience the virtual world of the meta-universe by virtual reality/augmented reality (VR/AR) technology. Wearable skin-integrated tactile and force sensors are widely used in immersive human–machine interactions due to their ultra-thin, ultra-soft, conformal characteristics. 
  • 1.2K
  • 17 Feb 2023
Topic Review
Thermomechanical Stress in Microelectronics Packaging Durability
Reflow soldering is the main connection technology of surface mounting. Firstly, the solder in paste form is stencil-printed onto the solder pads of the applied substrate, and then surface mounted devices are placed onto the solder deposits. Finally, the whole assembly is heated over the melting temperature of the solder alloy, which melts and forms solder joints. Surface mounting technology needs a low defect rate which is determined by process parameters, material properties, and the printed circuit board design. Accompanying the experiment and measurement, the identification and elimination of root causes can be effectively improved with numerical modelling, which also grants details to such physical mechanisms that are not even conventionally measurable.
  • 1.2K
  • 25 Aug 2023
Topic Review
Batteries for Internet of Things Applications
There has been significant progress in IoT solutions for a variety of fields. The real-time functionality and remote deployment of IoT solutions are two crucial aspects that are necessary for their successful implementation. To achieve this, external batteries play a major role. While lithium–ion batteries are often the go-to choice for IoT devices, it is essential to recognise that different IoT applications have unique needs. Therefore, it is important to conduct a thorough examination of existing battery solutions and their suitability for various IoT applications. 
  • 1.2K
  • 29 Dec 2023
Topic Review
Electrochemical Detection of CTC
CTC is the main target of liquid biopsy. In the past few decades, the separation of CTC based on the electrochemical method has attracted widespread attention due to its convenience, rapidness, low cost, high sensitivity, and no need for complex instruments and equipment. In this review, we summarized the latest developments in the electrochemical-based CTC detection, and discussed the challenges and possible trends.
  • 1.2K
  • 09 Nov 2020
Topic Review
THz Sensing of Human Skin
The non-ionizing and non-invasive nature of THz radiation, combined with its high sensitivity to water, has made THz imaging and spectroscopy highly attractive for in vivo biomedical applications for many years. Among them, the skin is primarily investigated due to the short penetration depth of THz waves caused by the high attenuation by water in biological samples. A complete model of skin describing the THz-skin interaction to reveal the optical properties of the skin from the measured THz spectrum is needed. It is crucial that the correct model is used, not just to ensure compatibility between different works, but more importantly to ensure the reliability of the data and conclusions.
  • 1.2K
  • 08 Jun 2021
Topic Review
Off-Road Detection Analysis for Autonomous Ground Vehicles
When it comes to some essential abilities of autonomous ground vehicles (AGV), detection is one of them. In order to safely navigate through any known or unknown environment, AGV must be able to detect important elements on the path. Detection is applicable both on-road and off-road, but they are much different in each environment. The key elements of any environment that AGV must identify are the drivable pathway and whether there are any obstacles around it. Many works have been published focusing on different detection components in various ways.
  • 1.2K
  • 17 Nov 2022
Topic Review
Simultaneous Localisation and Mapping Techniques for Autonomous Vehicles
The advancements in Information and Communication Technology (ICT) as well as increasing demand for vehicular safety has led to significant progressions in Autonomous Vehicle (AV) technology. Perception and Localisation are major operations that determine the success of AV development and usage. Therefore, significant research has been carried out to provide AVs with the capabilities to not only sense and understand their surroundings efficiently, but also provide detailed information of the environment in the form of 3D maps. Visual Simultaneous Localisation and Mapping (V-SLAM) has been utilised to enable a vehicle understand its surroundings, map the environment, and identify its position within the area.
  • 1.2K
  • 22 Nov 2022
Topic Review
Smart Energy Subsystem
A smart grid (SG), considered as a future electricity grid, utilizes bidirectional electricity and information flow to establish automated and widely distributed power generation. The SG provides a delivery network that has distributed energy sources, real-time asset monitoring, increased power quality, increased stability and reliability, and two-way information sharing.
  • 1.2K
  • 06 Jan 2023
Topic Review
Printing Methods to Fabricate Receptor Layers of Gas Sensors
Printing technologies are nowadays an integral element of contemporary materials science applied to development of low-cost gas sensors and multisensor arrays for many applications including a development of lab-on- chips. These protocols ensure automating of technological processes, a reproducibility of microstructural and functional characteristics with a reduced time necessary for the receptor material deposition over substrates. At the same time, using an accurate positioning system improves significantly the targeting of the substance, while the dosing setups allow to ensure a high control over the volume of discretely or continuously applied inks. The printing technologies enable forming planar receptor structures, even under a complex geometry, at various thicknesses and porosity with the required spatial resolution to be in nanometer micrometer ranges. Some methods, as dip-pen nanolithography, nano-imprinting lithography, and microcontact printing, are more suitable for discrete miniature devices with unique characteristics owing to the labor-intensive and multi-step procedures, while other ones, as ink-jet printing, aerosol jet printing or microextrusion printing, can be used quite easily in scaling the procedures to design gas sensors, including a rapid tuning of their geometric parameters without a necessity to prepare appropriate stencils and masks in advance. While designing the gas-sensor receptor materials, a great variety of printing technologies are used these days which vary both in the principle of operation and in such parameters as printing speed, spatial resolution, thickness of the formed coatings, and their microstructure, etc.
  • 1.2K
  • 23 May 2022
Topic Review
Multi-Sensor Monitoring of Human Stress
Many people live under stressful conditions which has an adverse effect on their health. Human stress, especially long-term one, can lead to a serious illness. Therefore, monitoring of human stress influence can be very useful. We can monitor stress in strictly controlled laboratory conditions, but it is time-consuming and does not capture reactions, on everyday stressors or in natural environment using wearable sensors, but with limited accuracy. Therefore, we began to analyze the current state of promising wearable stress-meters and the latest advances in the record of related physiological variables. Based on these results, we present the concept of an accurate, reliable and easier to use telemedicine device for long-term monitoring of people in a real life. In our concept, we ratify with two synchronized devices, one on the finger and the second on the chest. The results will be obtained from several physiological variables including electrodermal activity, heart rate and respiration, body temperature, blood pressure and others. All these variables will be measured using a coherent multi-sensors device. Our goal is to show possibilities and trends towards the production of new telemedicine equipment and thus, opening the door to a widespread application of human stress-meters. 
  • 1.2K
  • 25 May 2021
Topic Review
BESS Performance in Providing Various Electricity Market Services
The Battery Energy Storage System (BESS) is one of the possible solutions to overcoming the non-programmability associated with these energy sources. The capabilities of BESSs to store a consistent amount of energy and to behave as a load by releasing it ensures an essential source of flexibility to the power system.
  • 1.2K
  • 28 Feb 2024
Topic Review
Smart Parking System Based on Edge-Cloud-Dew Computing Architecture
In a smart parking system, the license plate recognition service controls the car’s entry and exit and plays the core role in the parking lot system. When the Internet is interrupted, the parking lot’s business will also be interrupted. Hence, an Edge-Cloud-Dew architecture for the mobile industry was proposed in order to tackle this critical problem. The architecture has an innovative design, including LAN-level deployment, Platform-as-a-Dew Service (PaaDS), the dew version of license plate recognition, and the dew type of machine learning model training. Based on these designs, the architecture presents many benefits, such as: (1) reduced maintenance and deployment issues and increased dew service reliability and sustainability; (2) effective release of the network constraint on cloud computing and increase in the horizontal and vertical scalability of the system; (3) enhancement of dew computing to resolve the heavy computing process problem; and (4) proposal of a dew type of machine learning training mechanism without requiring periodic retraining, but with acceptable accuracy. 
  • 1.2K
  • 03 Jul 2023
Topic Review
Interconnects (Integrated Circuits)
In integrated circuits (ICs), interconnects are structures that connect two or more circuit elements (such as transistors) together electrically. The design and layout of interconnects on an IC is vital to its proper function, performance, power efficiency, reliability, and fabrication yield. The material interconnects are made from depends on many factors. Chemical and mechanical compatibility with the semiconductor substrate, and the dielectric in between the levels of interconnect is necessary, otherwise barrier layers are needed. Suitability for fabrication is also required; some chemistries and processes prevent integration of materials and unit processes into a larger technology (recipe) for IC fabrication. In fabrication, interconnects are formed during the back-end-of-line after the fabrication of the transistors on the substrate. Interconnects are classified as local or global interconnects depending on the signal propagation distance it is able to support. The width and thickness of the interconnect, as well as the material from which it is made, are some of the significant factors that determine the distance a signal may propagate. Local interconnects connect circuit elements that are very close together, such as transistors separated by ten or so other contiguously laid out transistors. Global interconnects can transmit further, such as over large-area sub-circuits. Consequently, local interconnects may be formed from materials with relatively high electrical resistivity such as polycrystalline silicon (sometimes silicided to extend its range) or tungsten. To extend the distance an interconnect may reach, various circuits such as buffers or restorers may be inserted at various points along a long interconnect.
  • 1.2K
  • 17 Oct 2022
Topic Review
Things Software-Defined Network
The Industrial Internet of Things (IIoT) network generates great economic benefits in processes, system installation, maintenance, reliability, scalability, and interoperability. Wireless sensor networks (WSNs) allow the IIoT network to collect, process, and share data of different parameters among Industrial IoT sense Node (IISN). ESP8266 are IISNs connected to the Internet by means of a hub to share their information. In this article, a light-diffusion algorithm in WSN to connect all the IISNs is designed, based on the Peano fractal and swarm intelligence, i.e., without using a hub, simply sharing parameters with two adjacent IINSs, assuming that any IISN knows the parameters of the rest of these devices, even if they are not adjacent. We simulated the performance of our algorithm and compared it with other state-of-the-art protocols, finding that our proposal generates a longer lifetime of the IIoT network when few IISNs were connected. Thus, there is a saving-energy of approximately 5% but with 64 nodes there is a saving of more than 20%, because the IIoT network can grow in a 3n way and the proposed topology does not impact in a linear way but log3 , which balances energy consumption throughout the IIoT network.
  • 1.2K
  • 29 Oct 2020
Topic Review
Lithium-Ion Cell Temperature Estimation Techniques
A solution is to develop a suitable estimation strategy which led scholars to propose different temperature estimation schemes aiming to establish a balance among accuracy, adaptability, modelling complexity and computational cost. This article presented an exhaustive review of these estimation strategies covering recent developments, current issues, major challenges, and future research recommendations. The prime intention is to provide a detailed guideline to researchers and industries towards developing a highly accurate, intelligent, adaptive, easy-to-implement and computationally efficient online temperature estimation strategy applicable to health-conscious fast charging and smart onboard BMS. Full Paper:https://doi.org/10.3390/en14185960
  • 1.2K
  • 08 Oct 2021
Topic Review
Dye Sensitized Solar Cells
DSSCs are functional and efficient even in diffuse light, therefore they can generate electricity in the morning, evening and even indoors. Even as silicon prices fall and silicon-based photovoltaics become cheaper, DSSCs have great potential as they can be used in additional applications such as indoor and diffuse light. With a variety of fields of application, huge quantities of DSSCs could be produced in the future. With low production costs and no necessity for toxic compounds DSSCs are a potential product, which could circulate in the loops of a circular economy.
  • 1.2K
  • 02 Aug 2021
  • Page
  • of
  • 50
Academic Video Service