You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Copper-Based Conductive Inks
Silver (Ag), gold (Au), and copper (Cu) have been utilized as metals for fabricating metal-based inks/pastes for printed/flexible electronics. Among them, Cu is the most promising candidate for metal-based inks/pastes. Cu has high intrinsic electrical/thermal conductivity, which is more cost-effective and abundant, as compared to Ag. Moreover, the migration tendency of Cu is less than that of Ag. Thus, recently, Cu-based inks/pastes have gained increasing attention as conductive inks/pastes for printed/flexible electronics. We can divide Cu-based inks/pastes into four categories from the viewpoints of Cu sources: (i) traditional micron-sized flake/powder type, (ii) nanoparticle type, (iii) nanowire type, and (iv) precursor ion type. However, the disadvantages of Cu-based inks/pastes are their instability against oxidation under an ambient condition and tendency to form insulating layers of Cu oxide, such as cuprous oxide (Cu2O) and cupric oxide (CuO). The formation of the Cu oxidation causes a low conductivity in sintered Cu films and interferes with the sintering of Cu particles. The surface and interface designs for Cu-based conductive inks/pastes are important strategies for the oxidation resistance of Cu and low-temperature sintering to produce highly conductive Cu patterns/electrodes on flexible substrates. The surface control approaches include surface designs by polymers, small ligands, core-shell structures, and surface activation. The Cu-based mixed inks/pastes offer improved performances compared with the single use of each component.
  • 4.2K
  • 07 Sep 2020
Topic Review
Detection of Beta-Glucan
This entry provides a comprehensive review of the current literature about biological properties and available methods for the detection of beta-glucans. It shares the experience of the Nanotechnology Characterization Laboratory with the detection of beta-glucans in nanotechnology-based drug products. This entry summarizes and discusses five different approaches currently applied for the data interpretation of beta-glucan tests with respect to the acceptability (or lack thereof) of the beta-glucan levels in pharmaceutical products.
  • 4.0K
  • 03 Nov 2020
Topic Review
Ultrasonic Spray Pyrolysis
In the field of synthesis and processing of noble metal nanoparticles, the study of the bottom-up method, called Ultrasonic Spray Pyrolysis (USP), is becoming increasingly important. This review analyses briefly the features of USP, to underline the physical, chemical and technological characteristics for producing nanoparticles and nanoparticle composites with Au and Ag. The main aim is to understand USP parameters, which are responsible for nanoparticle formation. There are two nanoparticle formation mechanisms in USP: Droplet-To-Particle (DTP) and Gas-To-Particle (GTP). This review shows how the USP process is able to produce Au, Ag/TiO2, Au/TiO2, Au/Fe2O3 and Ag/(Y0.95 Eu0.05)2O3 nanoparticles, and presents the mechanisms of formation for a particular type of nanoparticle. Namely, the presented Au and Ag nanoparticles are intended for use in nanomedicine, sensing applications, electrochemical devices, and catalysis, in order to benefit from their properties, which cannot be achieved with identical bulk materials. The development of new noble metal nanoparticles with USP is a constant goal in Nanotechnology, with the objective to obtain increasingly predictable final properties of nanoparticles.
  • 4.0K
  • 14 Aug 2020
Topic Review
Electrochemical Glucose Sensing
The research field of glucose biosensing has shown remarkable growth and development since the first reported enzyme electrode in 1962. Extensive research on various immobilization methods and the improvement of electron transfer efficiency between the enzyme and the electrode have led to the development of various sensing platforms that have been constantly evolving with the invention of advanced nanostructures and their nano-composites. Examples of such nanomaterials or composites include gold nanoparticles, carbon nanotubes, carbon/graphene quantum dots and chitosan hydrogel composites, all of which have been exploited due to their contributions as components of a biosensor either for improving the immobilization process or for their electrocatalytic activity towards glucose. This review aims to summarize the evolution of the biosensing aspect of these glucose sensors in terms of the various generations and recent trends based on the use of applied nanostructures for glucose detection in the presence and absence of the enzyme.
  • 3.9K
  • 13 Nov 2020
Topic Review
Synthesis of Silver Nanoparticles
Silver nanoparticles, also known as AgNPs, have been extensively researched due to their one-of-a-kind characteristics, including their optical, antibacterial, and electrical capabilities. In the era of the antibiotics crisis, with an increase in antimicrobial resistance (AMR) and a decrease in newly developed drugs, AgNPs are potential candidates because of their substantial antimicrobial activity, limited resistance development, and extensive synergistic effect when combined with other drugs.
  • 3.9K
  • 13 Sep 2023
Topic Review
Layered Double Hydroxides
Layered double hydroxides (LDHs) are anionic clays which have found applications in a wide range of fields, including medicine (especially in drug delivery and release), environment (to remediate pollution), biotechnology, as precursors for catalysts, and in electrochemical applications (electrocatalysts, sensors, oxygen evolution reaction (OER), energy storage, fuel cells, etc.). To be used in electrochemistry  they should possess electrical conductivity which can be ensured by the presence of metals able to give reversible redox reactions in a proper potential window. The metal centers can act as redox mediators to catalyze reactions for which the required overpotential is too high, and this is a key aspect for the development of processes and devices where the control of charge transfer reactions plays an important role.
  • 3.9K
  • 30 Mar 2021
Topic Review
Transition Metal Dichalcogenides
In recent years, the material characteristics and properties of transition metal dichalcogenide (TMDCs) have gained research interest in various fields, such as electronics, catalytic, energy storage. In particular, many researchers have been focusing on the applications of TMDCs in dealing with environmental pollution. TMDCs provide a unique opportunity to develop higher-value applications related to environmental matters. This work highlights the applications of TMDCs contributing to pollution reduction in (i) gas sensing technology, (ii) gas adsorption and removal, (iii) wastewater treatment, (iv) fuel cleaning, and (v) carbon dioxide valorisation and conversion. Overall, the applications of TMDCs have successfully demonstrated the advantages of contributing to environmental conversation due to their special properties. The challenges and bottlenecks of implementing TMDCs in the actual industry are also highlighted. More efforts need to be devoted to overcoming the hurdles to maximize the potential of TMDCs implementation in the industry.
  • 3.9K
  • 27 Oct 2020
Topic Review
Cellulose Nanomaterials
Cellulose is the most abundant renewable source on Earth. Due to several of their characteristics, such as their renewability, sustainability, and eco-friendliness, nanocellulose-based materials are arousing growing interest from researchers in various fields of study and applications. 
  • 3.8K
  • 20 Dec 2022
Topic Review
XPS Analysis of Carbon Materials
The surface chemistry of carbon materials is predominantly explored using x-ray photoelectron spectroscopy (XPS). However, many journal articles have critical failures in the published analysis which typically stems from an ill-informed approach to analyzing the spectroscopic data. The presented work presents a discussion on lineshapes and associated changes in the spectral envelope of predominantly graphitic materials, which together with the use of the D-parameter to verify levels of the graphitic content, using this information to highlight a simple and logical approach to strengthen confidence in the functionalization derived from the carbon core-level spectra.
  • 3.8K
  • 16 Jul 2021
Topic Review
Molecular Nanomaterials in Industrial Applications
Nanomaterials have not only become one of the ‘hottest’ areas in research and development all over the world but also attracted numerous considerations in the industrial sectors. This technology can be primarily defined by their functional properties which determine how they interact with other disciplines. Recently, it becomes an evolving field in material science, materials processing technology, mechanics, electronics, optics, medicine, energy and aerospace, plastics and textiles etc. This technology not only establishes an interdisciplinary and emerging domain that embraces physics, chemistry, engineering but also contributes to detection of diseases, better therapy options, and remarkable reduced health-care expenses. Molecular nanomaterials can also be applied in manufacturing through ultra-precision, development of nano-metric microscopic devices, biological structures, nano robots, super computers, industries and genetics etc. All materials or devices which are nanometer scale (dimensions of roughly 1 to 100 nm) structured are included in nanomaterials.
  • 3.6K
  • 01 Sep 2021
Topic Review
Electrospun Nanofibers: Basic Principles
Electrospun nanofibers had been gaining importance in several areas such as the biomedical, environmental, food, textile, and biotechnology industries, amongst others. The fabrication of three-dimensional membranes through the electrospinning technique confers several characteristics that are important in the above industrial approaches such as high-to-volume radio, high surface area, controllable porosity, thickness, and mechanical properties, also the non-toxicity, biocompatibility, and biodegradability can be conferred to the scaffolds by choosing the adequate polymeric formulation. This entry discusses the characteristics and importance of electrospun nanofibers in industry.
  • 3.6K
  • 13 Aug 2021
Topic Review
Perovskite Nanomaterial
Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications. Their unique structural characteristics allow researchers to explore functionalities towards diverse directions, such as solar cells, light emitting devices, transistors, sensors, etc. Many perovskite nanomaterial-based devices have been demonstrated with extraordinary sensing performance to various chemical and biological species in both solid and solution states. In particular, perovskite nanomaterials are capable of detecting small molecules such as O2, NO2, CO2, etc. This review elaborates the sensing applications of those perovskite materials with diverse cations, dopants and composites. Moreover, the underlying mechanisms and electron transport properties, which are important for understanding those sensor performances, will be discussed. Their synthetic tactics, structural information, modifications and real time sensing applications are provided to promote such perovskite nanomaterials-based molecular designs. Lastly, we summarize the perspectives and provide feasible guidelines for future developing of novel perovskite nanostructure-based chemo- and biosensors with real time demonstration.
  • 3.6K
  • 17 Jul 2020
Topic Review
Neuromorphic Computing
Neuromorphic computing systems aims at processing information in a way similar to the human brain. Instead of a conventional von Neumann computer, a neuromorphic system generally relies on a neural network, where the memory and the processing elements are intimately co-located within the same hardware. Neuromorphic computing takes advantage of computational memories, which can both store and process data via physical laws within the device and/or the circuit. This entry summarizes the history and main concepts of neuromorphic computing, including both deep neural networks (DNNs) which are adopted for extensive artificial intelligence tasks, such as driverless cars, and spiking neural networks (SNNs), which aim at a more realistic brain-inspired computation. 
  • 3.6K
  • 22 Jan 2021
Topic Review
Synthesis of Mesoporous Silica Nanoparticles
Mesoporous silica nanoparticles (MSNs) have been advocated as nanocarriers for the treatment of various diseases because of their physicochemical properties and biocompatibility. The use of MSNs combined with therapeutic agents can provide better encapsulation and effective delivery. MSNs as nanocarriers might also be a promising tool to lower the therapeutic dosage levels and thereby to reduce undesired side effects. Furthermore, when combined with imaging compounds for diagnosis, they can be employed as theragnostic agents thus allowing both imaging and therapy using the same nanoparticle.
  • 3.6K
  • 19 Jul 2023
Topic Review
LGD Theory for Nanoscale Ferroelectrics
This is a entry of the Landau-Ginzburg-Devonshire (LGD) Theory applied for description of nanoscale ferroelectrics. The polarization switching kinetics of nanosized ferroelectric crystals and the transition between homogeneous and domain switching in the nanoscale ferroelectric films are considered. Homogeneous switching according to the Ginzburg-Landau-Devonshire (LGD) theory is possible only in two-dimensional (2D) ferroelectrics. The main condition for the applicability of the LGD theory in such systems is its homogeneity along the polarization switching direction. A review is given of the experimental results for two-dimensional (2D) films of a ferroelectric polymer, nanosized barium titanate nanofilms, and hafnium oxide-based films. For ultrathin 2D ferroelectric polymer films, the results are confirmed by first-principle calculations. Fitting of the transition region from homogeneous to domain switching by sigmoidal Boltzmann functions was carried out. Boltzmann function fitting data enabled us to estimate correctly the region sizes of the homogeneous switching in which the LGD theory is valid. These sizes contain several lattice constants or monolayers of a nanosized ferroelectrics.
  • 3.5K
  • 14 Jan 2021
Topic Review
Application of Bacteriophages in Nanotechnology
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display—a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target.
  • 3.5K
  • 21 Oct 2020
Topic Review
Electrical Conductivity of Nanoparticle-Enhanced Fluids
Research on nanoparticle-enhanced fluids’ electrical conductivity is at its beginning at this moment and the augmentation mechanisms are not fully understood. Basically, the mechanisms for increasing the electrical conductivity are described as electric double layer influence and increased particles’ conductance. Another idea that has resulted from state of the art is that the stability of nanofluids can be described with the help of electrical conductivity tests, but more coordinated research is needed. Concluding, this analysis has shown that a lot of research work is needed in the field of nanofluids’ electrical characterization and specific applications.
  • 3.4K
  • 23 Oct 2020
Topic Review
Carbon-based Materials for Hydrogen Storage
Carbon in its various forms (e.g., nanotubes, fullerenes, graphene) create a family of substances that enable the storage of large amounts of hydrogen in a reversible manner, which is confirmed by both computer simulations and experimental results.The main contraindication to using hydrogen as an energy source in mobile applications is still the low gravimetric density achieved by the available systems (according to the recommendations of the US Department of Energy, it should be 6 wt.%).
  • 3.4K
  • 27 May 2021
Topic Review
Titanium Dioxide for Water Purification
Titanium dioxide (TiO2), one of the most frequently used materials in general, has emerged as an excellent photocatalytic material for environmental applications. Here, principles and mechanisms of the photocatalytic activity of TiO2 have been analyzed. Structural and physical specificities of TiO2 nanoparticles, such as morphology, crystal structure, and electronic and optical properties, have been considered in the context of photocatalytic applications.
  • 3.4K
  • 16 Jan 2023
Topic Review
Nanoparticles as Drug Delivery Systems
The application of inventions or products from nanotechnology has revolutionised all aspects of everyday life ranging from medical applications to its impact on the food industry. Nanoparticles have made it possible to significantly extend the shelf lives of food product, improve intracellular delivery of hydrophobic drugs and improve the efficacy of specific therapeutics such as anticancer agents. 
  • 3.4K
  • 19 Jun 2023
  • Page
  • of
  • 42
Academic Video Service