You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Subject:
All Disciplines Arts & Humanities Biology & Life Sciences Business & Economics Chemistry & Materials Science Computer Science & Mathematics Engineering Environmental & Earth Sciences Medicine & Pharmacology Physical Sciences Public Health & Healthcare Social Sciences
Sort by:
Most Viewed Latest Alphabetical (A-Z) Alphabetical (Z-A)
Filter:
All Topic Review Biography Peer Reviewed Entry Video Entry
Topic Review
Small Spirocyclic, Xanthene-Based Fluorescent Probes
The use of fluorescent probes in a multitude of applications is still an expanding field. This review covers the recent progress made in small molecular, spirocyclic xanthene-based probes containing different heteroatoms (e.g., oxygen, silicon, carbon) in position 10′. After a short introduction, we will focus on applications like the interaction of probes with enzymes and targeted labeling of organelles and proteins, detection of small molecules, as well as their use in therapeutics or diagnostics and super-resolution microscopy. Furthermore, the last part will summarize recent advances in the synthesis and understanding of their structure–behavior relationship including novel computational approaches. 
  • 1.7K
  • 07 Jan 2021
Topic Review
Tissue Inhibitor of Metalloproteases 3
The proteolytical cleavage of transmembrane proteins with subsequent release of their extracellular domain, so-called ectodomain shedding, is a post-translational modification that plays an essential role in several biological processes, such as cell communication, adhesion and migration. Metalloproteases are major proteases in ectodomain shedding, especially the disintegrin metalloproteases (ADAMs) and the membrane-type matrix metalloproteases (MT-MMPs), which are considered to be canonical sheddases for their membrane-anchored topology and for the large number of proteins that they can release. The unique ability of tissue inhibitor of metalloproteases 3 (TIMP-3) to inhibit different families of metalloproteases, including the canonical sheddases (ADAMs and MT-MMPs), renders it a master regulator of ectodomain shedding. 
  • 1.7K
  • 16 Mar 2022
Topic Review
Genetically Encoded Fluorescent Redox Biosensors
In the most general sense of this term, a genetically encoded fluorescent redox biosensor is a kind of genetic system that changes a fluorescence in response to a redox event. Most often, such a tool is a chimeric protein consisting of a sensory domain that responds to a redox stimulus, and a domain whose fluorescence changes depending on alterations occurring with the sensory domain. It can also be a single-domain fluorescent protein, the structure of which changes when exposed to a redox stimulus, and the change in the structure leads to a change in fluorescence. In addition, there are transcriptional reporters, the principle of which is based on the alteration of the transcription of the fluorescent protein gene upon exposure to a redox stimulus. This article will focus on protein genetically encoded fluorescent redox biosensors that are currently used in in vivo research.
  • 1.7K
  • 11 Dec 2020
Topic Review
Membrane Proteins in Diseases and Potential as Biomarkers
Many biological processes (physiological or pathological) are relevant to membrane proteins (MPs), which account for almost 30% of the total of human proteins. As such, MPs can serve as predictive molecular biomarkers for disease diagnosis and prognosis. 
  • 1.7K
  • 11 May 2023
Topic Review
Recent Applications of Retro-Inverso Peptides
Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case.
  • 1.7K
  • 22 Sep 2021
Topic Review
Signaling Pathways in Aging
Aging is a fundamental biological process accompanied by a general decline in tissue function. Indeed, as the lifespan increases, age-related dysfunction, such as cognitive impairment or dementia, will become a growing public health issue. 
  • 1.7K
  • 30 Apr 2021
Topic Review
DNA Polymerases
Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization. The principal idea of participation of different polymerases in specific transactions at the fork proposed by Morrison and coauthors 30 years ago and later named “division of labor,” remains standing, with an amendment of the broader role of polymerase δ in the replication of both the lagging and leading DNA strands. However, cancer-associated mutations predominantly affect the catalytic subunit of polymerase ε that participates in leading strand DNA synthesis. 
  • 1.7K
  • 14 Dec 2020
Topic Review
Toll-Like Receptor 2
TLRs are one of four major families of pattern recognition receptor (PRRs), which include also NOD-like receptors (NLRs), RIG-like receptors (RLRs), C-type lectin receptors (CLRs), and represent the cornerstone of the innate immune response. TLR2, together with TLR1, TLR3, TLR4, and TLR5, was first identified and characterized in 1998. TLR2 is the only TLR that forms functional heterodimers with more than two other types of TLRs, forming dimers with TLR1, TLR6, and in some cases with TLR4. TLR2 recognizes molecules frequently associated with pathogens, the so-called pathogen-associated molecular patterns (PAMPs), leading to activation of downstream signal transduction pathways, which result in the production of inflammatory cytokines, type I interferons (IFNs), and other mediators necessary for the development of effective immune responses. Moreover, TLR2 is involved in the recognition of damage-associated molecular patterns (DAMPs), released by damaged tissues.
  • 1.6K
  • 18 Dec 2020
Topic Review
The Role of Flavonoids in Plant Terrestrialization
Plants evolved an impressive arsenal of specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Flavonoids are maybe the most important specilized metabolites that show multifarious roles in the sucess of plant terrestrialization. These compounds modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. Therefore, flavonoids were essential to plant development in the “new world” scarce of water and nutrients.
  • 1.6K
  • 30 May 2022
Topic Review
Glutathione System from Cyanobacteria to Higher Eukaryotes
From bacteria to plants and humans, the glutathione system plays a pleiotropic role in cell defense against metabolic, oxidative and metal stresses. Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine nucleophile tri-peptide, is the central player of this system that acts in redox homeostasis, detoxification and iron metabolism in most living organisms. GSH directly scavenges diverse reactive oxygen species (ROS), such as singlet oxygen, superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide and carbon radicals. It also serves as a cofactor for various enzymes, such as glutaredoxins (Grxs), glutathione peroxidases (Gpxs), glutathione reductase (GR) and glutathione-S-transferases (GSTs), which play crucial roles in cell detoxication.
  • 1.6K
  • 08 Jun 2023
Topic Review
Insulin-Degrading Enzyme
Insulin-degrading enzyme (IDE) is a highly conserved and ubiquitously expressed metalloprotease that degrades insulin and several other intermediate-size peptides. For many decades, IDE had been assumed to be involved primarily in hepatic insulin clearance, a key process that regulates availability of circulating insulin levels for peripheral tissues. Emerging evidence, however, suggests that IDE has several other important physiological functions relevant to glucose and insulin homeostasis, including the regulation of insulin secretion from pancreatic β-cells. Investigation of mice with tissue-specific genetic deletion of Ide in the liver and pancreatic β-cells (L-IDE-KO and B-IDE-KO mice, respectively) has revealed additional roles for IDE in the regulation of hepatic insulin action and sensitivity.
  • 1.6K
  • 21 Feb 2021
Topic Review
Cold Plasma Systems for Medicine
Plasma is the predominant state of matter in the known universe (it is estimated that up to 99% of matter is plasma), although not on our planet, where the conditions of pressure and temperature make normal the states of matter—solid, liquid, and gas—that in global terms are exotic.  If we add energy to a gas, we will partially or totally ionize it. In this way, we reach a new state of matter, plasma, made up of free electrons, atoms and molecules (electrically neutral particles), and ions. The energy needed to generate plasma can be supplied through electrical discharges in gases, in which free electrons take energy field and lose it through excitation and ionization processes of the atoms and molecules in the gas. The interaction of a plasma with a surface, either solid, liquid or belonging to a live system, is a complex process involving many different active species and reactions. The use of cold plasma for medical applications is at present in the rise as it has been proven as a powerful therapeutic tool for healing, desinfection  and surface functionalization
  • 1.6K
  • 01 Apr 2021
Topic Review
Cytochrome P450 in Escherichia coli
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs.
  • 1.6K
  • 23 Feb 2023
Topic Review
Strategies for AAV-Based Therapy of Ducheen Muscular Dystrophin
Gene therapy using the adeno-associated virus (rAAV) to deliver mini/micro- dystrophin is the current promising strategy for Duchenne Muscular Dystrophy (DMD). However, the further transformation of this strategy still faces many “bottlenecks”. Most gene therapies are only suitable for infants with strong muscle cell regeneration and immature immune system, and the treatment depends heavily on the high dose of rAAV. However, high-dose rAAV inevitably causes side effects such as immune response and acute liver toxicity. Therefore, how to reduce the degree of fibrosis and excessive immune response in older patients and uncouple the dependence association between therapeutic effect and high dose rAAV are crucial steps for the transformation of rAAV-based gene therapy. 
  • 1.6K
  • 18 Nov 2022
Topic Review
Leaf Molecular and Hormonal Regulation
Shoot apical meristems (SAM) are tissues that function as a site of continuous organogenesis, which indicates that a small pool of pluripotent stem cells replenishes into lateral organs. The coordination of intercellular and intracellular networks is essential for maintaining SAM structure and size and also leads to patterning and formation of lateral organs. Leaves initiate from the flanks of SAM and then develop into a flattened structure with variable sizes and forms. This process is mainly regulated by the transcriptional regulators and mechanical properties that modulate leaf development. Leaf initiation along with proper orientation is necessary for photosynthesis and thus vital for plant survival. Leaf development is controlled by different components such as hormones, transcription factors, miRNAs, small peptides, and epigenetic marks. Moreover, the adaxial/abaxial cell fate, lamina growth, and shape of margins are determined by certain regulatory mechanisms. The over-expression and repression of various factors responsible for leaf initiation, development, and shape have been previously studied in several mutants. However, in this review, we collectively discuss how these factors modulate leaf development in the context of leaf initiation, polarity establishment, leaf flattening and shape.
  • 1.6K
  • 27 Oct 2020
Topic Review
Sea Slug Elysia crispata
Some species of sacoglossan sea slugs are able to steal chloroplasts from the algae they feed on and maintain them functional for several months, a process termed “kleptoplasty”. One of these photosynthetic slugs is Elysia crispata, found in coral reefs of the Gulf of Mexico. This sacoglossan inhabits different depths (0–25 m), being exposed to different food sources and contrasting light conditions.
  • 1.6K
  • 19 Apr 2022
Topic Review
Glycans on Cell Surface Receptors
Cells undergo proliferation and apoptosis, migration and differentiation via a number of cell surface receptors, most of which are heavily glycosylated.We discuss the structures and roles of glycan chains of receptors to better understand their regulation in cell survival and cell death.
  • 1.6K
  • 10 Jun 2021
Topic Review
Tumor Cell Infiltration into the Brain in Glioblastoma
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now.
  • 1.6K
  • 07 Feb 2022
Topic Review
Copper Homeostasis in Mammals
One of the hallmarks of Cu metabolism in mammals is that tissue and fluid levels are normally maintained within a very narrow range of concentrations.  This results from the ability of the organism to respond to variations in intake from food and drink by balancing excretion, which occurs mainly via the bile and feces.  Although this sounds straightforward and we have already learned a great deal about aspects of this process, the balance between overall intake and excretion occurs over a high background of Cu recycling, which has generally been ignored.  In fact, most of the Cu absorbed from the GI tract actually comes from digestive fluids and is constantly “re-used”.  A great deal more recycling of Cu probably occurs in the interior, between cells of individual tissues and the fluid of the blood and interstitium.  This review presents what is known that is pertinent to understanding these complexities of mammalian Cu homeostasis and indicates where further studies are needed.
  • 1.6K
  • 10 Nov 2020
Topic Review
IL-10 in Neurodegenerative Diseases
IL-10, an immunosuppressive cytokine, is considered an important anti-inflammatory modulator of glial activation, preventing inflammation-mediated neuronal degeneration under pathological conditions. In this narrative review, we summarize recent insights about the role of IL-10 in the neurodegeneration associated with neuroinflammation, in diseases such as Multiple Sclerosis, Traumatic Brain Injury, Amyotrophic lateral sclerosis, Alzheimer's Disease, and Parkinson's Disease, focusing on the contribution of this cytokine not only in terms of protective action, but also as possibly responsible for clinical worsening. The knowledge of this double face of the same coin, regarding the biological role of the IL-10, could aid the development of targeted therapies useful for limiting neurodegenerative processes.
  • 1.6K
  • 17 Jul 2020
  • Page
  • of
  • 133
Academic Video Service