Topic Review
Biofuels
As defined by the European Union, “Biofuels are liquid or gaseous transport fuels such as biodiesel and bioethanol which are made from biomass”. Bioethanol is the most common biofuel obtained by a fermentation process and can be run by using a variety of carbon sources.
  • 919
  • 16 Feb 2021
Topic Review
Thermochemical Recycling of Waste Tyres
Utilising pyrolysis as a waste tyre processing technology has various economic and social advantages, along with the fact that it is an effective conversion method. Despite extensive research and a notable likelihood of success, this technology has not yet seen implementation in industrial and commercial settings. In this review, over 100 recent publications are reviewed and summarised to give attention to the current state of global tyre waste management, pyrolysis technology, and plastic waste conversion into liquid fuel. The study also investigated the suitability of pyrolysis oil for use in diesel engines and provided the results on diesel engine performance and emission characteristics. Most studies show that discarded tyres can yield 40–60% liquid oil with a calorific value of more than 40 MJ/kg, indicating that they are appropriate for direct use as boiler and furnace fuel. It has a low cetane index, as well as high viscosity, density, and aromatic content. According to diesel engine performance and emission studies, the power output and combustion efficiency of tyre pyrolysis oil are equivalent to diesel fuel, but engine emissions (NOX, CO, CO, SOX, and HC) are significantly greater in most circumstances. These findings indicate that tyre pyrolysis oil is not suitable for direct use in commercial automobile engines, but it can be utilised as a fuel additive or combined with other fuels. 
  • 918
  • 23 Jan 2022
Topic Review
Micro combined heat and power
       Micro Combined Heat and Power (µCHP) systems in a DG infrastructure can reduce a building’s primary energy consumption, reduce carbon footprint, and enhance resiliency. The simultaneous production of electrical and thermal energy from a single fuel source at a high overall energy efficiency can reduce primary energy consumption while lowering greenhouse gas (GHG) emissions. A comprehensive overview of various modeling approaches adopted by international researchers is presented. The key objective is to present the state-of-the-art models and approaches while identifying opportunities for further refinement to expand the capabilities of such models for versatile applications.  
  • 917
  • 27 Aug 2020
Topic Review
Structure-Borne Noise in Offshore Piling
The growing demand for renewable energy supply stimulates a drastic increase in the deployment rate of offshore wind energy. Offshore wind power generators are usually supported by large foundation piles that are driven into the seabed with hydraulic impact hammers or vibratory devices. The pile installation process, which is key to the construction of every new wind farm, is hindered by a serious by-product: the underwater noise pollution. 
  • 913
  • 14 Sep 2021
Topic Review
Lattice Boltzmann Method: Nuclear Reactor
Nuclear engineering requires computationally efficient methods to simulate different components and systems of plants. The Lattice Boltzmann Method (LBM), a numerical method with a mesoscopic approach to Computational Fluid Dynamic (CFD) derived from the Boltzmann equation and the Maxwell–Boltzmann distribution, can be an adequate option.
  • 909
  • 10 Aug 2021
Topic Review
Gas Turbines to the Hydrogen Energy Move
Land-based gas turbines (GTs) are continuous-flow engines that run with permanent flames once started and at stationary pressure, temperature, and flows at stabilized load. Combustors operate without any moving parts and their substantial air excess enables complete combustion. These features provide significant space for designing efficient and versatile combustion systems. In particular, as heavy-duty gas turbines have moderate compression ratios and ample stall margins, they can burn not only high- and medium-BTU fuels but also low-BTU ones. Hydrogen is an energy carrier and not a primary energy as there are very scarce natural sources thereof; the rare reservoirs of hydrogen originate from chemical reactions inside the earth crust and are sometimes referred to as “natural H2”or “white H2”.
  • 906
  • 14 Mar 2024
Topic Review
Drying Biomass Using Solar Energy
In the world, energy used for drying processes consumes 7–15% of industrial energy. Therefore, the cost of this energy is a crucial challenge to looking for an alternative source of energy, for example, solar energy. Solar energy is available in almost all the world, is free and provides a clean and free pollution energy source. Furthermore, solar energy has a higher development potential than other alternative energy sources, such as the ocean, biomass and geothermal.
  • 905
  • 28 Dec 2022
Topic Review
Fault Detection and Classification of Wind Turbines
Wind turbines are widely used worldwide to generate clean, renewable energy. The biggest issue with a wind turbine is reducing failures and downtime, which lowers costs associated with operations and maintenance. Wind turbines’ consistency and timely maintenance can enhance their performance and dependability.
  • 904
  • 27 Sep 2022
Topic Review
Subtractive Shading Envelope's Computational Workflow
This study proposes a voxel-based design approach based on the subtractive mechanism of shading envelopes and attributes information of point cloud data in tropical climates. In particular, the proposed method evaluates a volumetric sample of new buildings based on predefined shading performance criteria. With the support of geometric and radiometric information stored in point cloud such as position (XYZ), color (RGB), and reflection intensity (I), an integrated computational workflow between passive design strategy and 3D scanning technology is developed. It aims not only to compensate for some pertinent aspects of the current 3D site modelling such as vegetation and surrounding buildings but also to investigate surface characteristics of existing contexts such as visible sun vectors and material properties. These aspects are relevant for conducting a comprehensively environmental simulation while averting negative microclimatic impacts when locating the new building into the existing context. Ultimately, this study may support architects for taking decision-making in conceptual design stage based on the real contextual conditions.
  • 901
  • 18 Aug 2020
Topic Review
Renewable Energy and Sustainability
One of the most effective ways to achieve sustainability targets is to use renewable energy sources, such as wind, solar, biomass, biodiesel, ethanol, hydroelectric, and also tidal, since they contribute to reduce energy dependence on fossil fuels, reduce greenhouse gas (GHG) emissions, reduce environmental pollution, and improve the efficiency of the electrical grid.
  • 900
  • 25 Aug 2020
Topic Review
Semi-Closed Oxy–Fuel Combustion Power Cycles with CO2 Recirculation
With the increases in organic fuel prices and growing legislative restrictions aimed at increasing environmental safety and reducing the carbon footprint, the task of increasing thermal power plant efficiency is becoming more and more topical. Transforming combusting fuel thermal energy into electric power more efficiently will allow the reduction of the fuel cost fraction in the cost structure and decrease harmful emissions, especially greenhouse gases, as less fuel will be consumed. There are traditional ways of improving thermal power plant energy efficiency: increasing turbine inlet temperature and utilizing exhaust heat. An alternative way to improve energy efficiency is the use of supercritical CO2 power cycles, which have a number of advantages over traditional ones due to carbon dioxide’s thermophysical properties. In particular, the use of carbon dioxide allows increasing efficiency by reducing compression and friction losses in the wheel spaces of the turbines; in addition, it is known that CO2 turbomachinery has smaller dimensions compared to traditional steam and gas turbines of similar capacity.
  • 899
  • 16 Dec 2022
Topic Review
Conservation-Compatible Retrofit Solutions
Historic, listed, or unlisted, buildings account for 30% of the European building stock. Since they are complex systems of cultural, architectural, and identity value, they need particular attention to ensure that they are preserved, used, and managed over time in a sustainable way. This implies a demand for retrofit solutions able to improve indoor thermal conditions while reducing the use of energy sources and preserving the heritage significance. Often, however, the choice and implementation of retrofit solutions in historic buildings is limited by socio-technical barriers (regulations, lack of knowledge on the hygrothermal behaviour of built heritage, economic viability, etc.). 
  • 897
  • 24 Nov 2021
Topic Review
Wind Turbine Technology Trends
The rise in prices of traditional energy sources, the high dependence of many countries on their import, and the associated need for security of supply have led to large investments in new capacity of wind power plants. Although wind power generation is a mature technology and levelized cost of electricity low, there is still room for its improvement.
  • 895
  • 18 May 2023
Topic Review
Delamination-and Electromigration-Related Failures
The reliability of photovoltaic (PV) modules operating under various weather conditions attracts the manufacturer’s concern since several studies reveal a degradation rate higher than 0.8% per year for the silicon-based technology and reached up to 2.76% per year in a harsh climate. The lifetime of the PV modules is decreased because of numerous degradation modes. Electromigration and delamination are two failure modes that play a significant role in PV modules’ output power losses. The correlations of these two phenomena are not sufficiently explained and understood like other failures such as corrosion and potential-induced degradation. 
  • 886
  • 30 Jun 2021
Topic Review Peer Reviewed
Cushion Gas Consideration for Underground Hydrogen Storage
Due to the increasing world population and environmental considerations, there has been a tremendous interest in alternative energy sources. Hydrogen plays a major role as an energy carrier due to its environmentally benign nature. The combustion of hydrogen releases water vapor while it also has a vast industrial application in aerospace, pharmaceutical, and metallurgical industries. Although promising, hydrogen faces storage challenges. Underground hydrogen storage (UHS) presents a promising method of safely storing hydrogen. The selection of the appropriate cushion gas for UHS is a critical aspect of ensuring the safety, efficiency, and reliability of the storage system. Cushion gas plays a pivotal role in maintaining the necessary pressure within the storage reservoir, thereby enabling consistent injection and withdrawal rates of hydrogen. One of the key functions of the cushion gas is to act as a buffer, ensuring that the storage pressure remains within the desired range despite fluctuations in hydrogen demand or supply. This is achieved by alternately expanding and compressing the cushion gas during the injection and withdrawal cycles, thereby effectively regulating the overall pressure dynamics within the storage facility. Furthermore, the choice of cushion gas can have significant implications on the performance and long-term stability of the UHS system. Factors such as compatibility with hydrogen, cost-effectiveness, availability, and environmental impact must be carefully considered when selecting the most suitable cushion gas. The present study provides a comprehensive review of different types of cushion gases commonly used in UHS, including nitrogen, methane, and carbon dioxide. By examining the advantages, limitations, and practical considerations associated with each option, the study aims to offer valuable insights into optimizing the performance and reliability of UHS systems. Ultimately, the successful implementation of UHS hinges not only on technological innovation but also on strategic decisions regarding cushion gas selection and management. By addressing these challenges proactively, stakeholders can unlock the full potential of hydrogen as a clean and sustainable energy carrier, thereby contributing to the global transition towards a low-carbon future.
  • 885
  • 15 May 2024
Topic Review
GHDs with Solar Technologies
Greenhouse dryers (GHDs) are simple facilities that can provide large capacities for drying agricultural products. The solar GHDs (SGHDs) are classified as passive and active systems. The passive SGHDs have a heat transfer through natural convection, whereas, SGHDs having a heat transfer through forced convection are called active dryers. Active SGHDs can be integrated with different solar technologies, including photovoltaic (PV), photovoltaic-thermal (PVT), and solar thermal collectors. Additionally, solar-assisted greenhouse dryers (SGHDs) can be integrated with heat pumps and thermal energy storage (TES) units and presented in hybrid configuration considering their integration with other renewable energy sources with the aim of improving the thermal performance.
  • 877
  • 01 Jul 2021
Topic Review
Cathodes for PCFCs
In a protonic ceramic fuel cell (PCFC), the cathode is a porous oxide material where electrochemical reduction takes place involving the reduction of oxygen and combination with protons from the electrolyte to form water. The cathode is generally recognised as critical for the performance of solid oxide fuel cells, and even more so for the proton-conducting class of ceramic devices. PCFCs are promising electrochemical devices for the efficient and clean conversion of hydrogen and low hydrocarbons into electrical energy. Their intermediate operation temperature (500–800 °C) proffers advantages in terms of greater component compatibility, unnecessity of expensive noble metals for the electrocatalyst, and no dilution of the fuel electrode due to water formation. Nevertheless, the lower operating temperature, in comparison to classic solid oxide fuel cells, places significant demands on the cathode as the reaction kinetics are slower than those related to fuel oxidation in the anode or ion migration in the electrolyte. Cathode design and composition are therefore of crucial importance for the cell performance at low temperature. The different approaches that have been adopted for cathode materials research can be broadly classified into the categories of protonic–electronic conductors, oxide-ionic–electronic conductors, triple-conducting oxides, and composite electrodes composed of oxides from two of the other categories. 
  • 875
  • 06 Jul 2021
Topic Review
Pitch Control Technique for Horizontal Axis Wind Turbines
In recent years, the increasing environmental problems, especially the issue of global warming, have motivated demand for a cleaner, more sustainable, and economically viable energy source. In this context, wind energy plays a significant role due to the small negative impact it has on the environment, which makes it among the most widespread potential sustainable renewable fuel nowadays. However, wind turbine control systems are important factors in determining the efficiency and cost-effectiveness of a wind turbine (WT) system for wind applications.
  • 874
  • 12 Oct 2023
Topic Review
Low/Medium Voltage Direct Current Microgrids
Direct current (DC) microgrids (MG) constitute a research field that has gained great attention over the past few years, challenging the well-established dominance of their alternating current (AC) counterparts in Low Voltage (LV) (up to 1.5 kV) as well as Medium Voltage (MV) applications (up to 50 kV). 
  • 873
  • 22 Sep 2021
Topic Review
Electroreforming of Biomass for Value-Added Products
Humanity’s overreliance on fossil fuels for chemical and energy production has resulted in uncontrollable carbon emissions that have warranted widespread concern regarding global warming. To address this issue, there is a growing body of research on renewable resources such as biomass, of which cellulose is the most abundant type. In particular, the electrochemical reforming of biomass is especially promising, as it allows greater control over valorization processes and requires milder conditions. Driven by renewable electricity, electroreforming of biomass can be green and sustainable. Moreover, green hydrogen generation can be coupled to anodic biomass electroforming, which has attracted ever-increasing attention.
  • 865
  • 22 Dec 2021
  • Page
  • of
  • 33
ScholarVision Creations