Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1411 word(s) 1411 2021-04-15 08:54:34 |
2 format correct Meta information modification 1411 2021-04-23 02:42:23 | |
3 Definition of carbon nanofibers has been added. -101 word(s) 1310 2021-05-02 20:32:54 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Sabantina, L. Carbon Nanofibers. Encyclopedia. Available online: https://encyclopedia.pub/entry/8914 (accessed on 07 July 2024).
Sabantina L. Carbon Nanofibers. Encyclopedia. Available at: https://encyclopedia.pub/entry/8914. Accessed July 07, 2024.
Sabantina, Lilia. "Carbon Nanofibers" Encyclopedia, https://encyclopedia.pub/entry/8914 (accessed July 07, 2024).
Sabantina, L. (2021, April 22). Carbon Nanofibers. In Encyclopedia. https://encyclopedia.pub/entry/8914
Sabantina, Lilia. "Carbon Nanofibers." Encyclopedia. Web. 22 April, 2021.
Carbon Nanofibers
Edit

Carbon nanofibers are nano-sized fibers that have a high degree of crystalline orientation. In recent years, ecological issues have led to the search for new green materials from biomass as precursors for producing carbon materials. Such green materials are more attractive than traditional petroleum-based materials, which are environmentally harmful and non-biodegradable.

carbon nanofibers biopolymers biomass carbon nano-onions biotechnologie

1. Introduction

Increasing environmental awareness and ecological problems have led in recent years to new green materials made from biomass as precursors for the production of carbon materials receiving more research attention, as they seemed to be more attractive than traditional petroleum-based materials, which are polluting, toxic and non-biodegradable [1]. At the same time, there is a need to develop cleaner, more economical, efficient and energy-saving materials and to focus the world’s attention on the new green, renewable energies. Converting biomass waste into carbon materials can help solve the problem of pollution and improve traditional processing methods for producing carbon in the face of the energy crisis and environmental problems [1]. Low-cost renewable biomass materials, such as sawdust, wood residues, rice husks, and corn stover, among many others, are available in large quantities as waste from forestry and agriculture. These renewable biomass materials can be considered promising candidates for carbon precursors [2].

Various techniques for synthesizing carbon nanofibers from biomass, such as electrospinning, pyrolysis, hydrothermal treatment, and ultrasonic treatment, are already known and have already been explained by many research groups [3][4][5][6][7][8][9].

Most of the techniques are complicated and require extensive use of energy resources. For example, the production of carbon nanofibers from hazelnut shell biomass as a carbon resource by hydrothermal technique goes through a series of complex processes, such as hydrothermal carbonization, heat treatment, potassium hydroxide activation, magnesium oxide templating to produce anode materials for lithium-ion batteries at the end of the process [10].

2. Carbon Nanofibers Application in Biotechnological and Medical Fields

Today’s medicine progresses greatly and applies more therapeutic solutions based on the field of nanotechnology and nanomaterials. High-performance materials, such as carbon nanotubes, graphene, or carbon nanofibers, have already established their place in developing new implants and medical devices [11]. Due to their properties, high electrical conductivity, unique surface characteristics, and biomimetic shape, these nanomaterials are ideal for constructing implantable electrodes and biosensors. In addition, they can serve as tissue substrates for in vitro and in vivo applications. For this reason, stimulation of an electric field can regulate cell behavior both in vivo and in vitro due to the conductive properties of carbon substrates. Nanofibers resemble the natural structure of cell assembly and can be used in the form of porous mats as membranes for medical reconstruction, substrates for bone and cartilage development in post-traumatic tissues [12][13].

Carbon nanofibers are promising candidates for diverse medical applications thanks to their physical properties. Due to their conductivity, they can be used as biosensors and electrodes to stimulate the nervous system, as well as for the fabrication of scaffolds for regenerative medicine. As nonwovens, mats, membranes, or other various types of nanocomposites, nanofibers can be used in many biotechnological fields [14][15][16][17][18]. Aoki et al. investigated the application potential of organic nanofibers and electrospun carbon nanofibers for bone regenerative medicine [19].

Previously, the research focus centered on coating nanofiber mates with antibacterial substances. The efficacy of silver nanoparticles and the active healing properties of chitosan polymer hydrogels received numerous publications. With the development of electrospinning processes, the research focus increasingly shifted to electrospun nanofibers, which exhibit antimicrobial properties through the addition of nanoparticles [20][21]. Due to their high mechanical strength and good biocompatibility, carbon-based nanofibers offer further areas of application in biomedicine [22][23][24].

In 2019 Li et al. conducted a study of a superhydrophobic hemostatic material made from a nanocomposite dispersion of a dense network of carbon nanofibers and polytetrafluoroethylene (PTFE) or poly-dimethylsiloxane (PDMS) on support [25]. This nanofiber material has been used for its particular and distinctive way of blood coagulation, which allows rapid blood coagulation due to the presence of microfibers and reduces subsequent blood loss, regardless of the pressure applied, due to its superhydrophobic characteristics.

In tissue engineering for regeneration or organ reconstitution, cells are designed to attach, proliferate, multiply and regenerate multiple organs, such as skin, bone, cartilage, muscle, tendons, heart, nerves, and blood vessels. These strategies depend on appropriate biochemical and physicochemical properties and molecular influences or control of cellular behavior [26]. Carbon nanofibers are potential candidates for tissue engineering applications because they have suitable physical, structural, mechanical, and biological properties [27][28][29]. In addition, carbon nanofibers have exceptional mechanical properties, conductivity, and excellent cytocompatibility properties, as well as osteoblast adhesion, which are suitable for neural and bone tissue engineering applications. In terms of carbon nanofiber adhesion and proliferation, they show the interaction of astrocytes like glial scar tissue-forming cells. These functions of astrocytes make them able to minimize nanoscale fibers and scar tissue formation, reduce the glial scar tissue formation and show positive interaction with neurons, which would be a great support for neural implants [30][31][32].

Recent research indicates that carbon-based nanomaterials are potential candidates for biomedical applications, including drug delivery, repair and regeneration of various tissues, including nerves, muscles, bones, and for imaging [33][34][35]. Stocco et al. have investigated that carbon nanofibers have strong mechanical properties capable of surviving without affecting mesenchymal stem cells for tissue engineering of the knee meniscus [36]. Samadian et al. and Patel et al. have found that carbon nanofibers are promising platforms with a nanoscale surface area that are helpful for tissue healing and bone regeneration process through anti-inflammation, pro-angiogenesis and stem cell stimulation [35][37]. The research group of Serafin et al. has presented that the electrically conductive properties of carbon nanofibers can be used in cardiac or neural tissue engineering applications [38]. In addition, carbon nanofiber composites have special properties, such as large specific area, high porosity, good biodegradability, cytocompatibility and conductivity, etc., making them ideal candidates in the field of tissue engineering and biological medicine [39][40][41][42].

In addition, there is a wide range of further carbon nanostructures such as carbon nanotubes, carbon nanofibers, carbon nano-onions (CNOs), graphene, which have attracted a lot of attention recently due to the promising industrial application areas. Onion-like quasi-spherical CNPs (OCNPs) with hollow cage-like concentric graphene shells have been known since 1992 but are still under-researched compared to other allotropic forms of nanocarbons, such as carbon nanotubes, carbon fibers, fullerenes, graphene, and carbon dots. CNOs are a niche product that has not been explored as much as other carbon nanostructures and offer many advantages, unlike other carbon nanostructures. They exhibit lower toxicity, have one of the exceptional biocompatibilities and are, therefore, of particular interest for medical and biotechnological applications, such as imaging, drug delivery, tissue engineering, sensing and as [43][44][45]. Excellent electrochemical performance is offered by CNOs due to their high surface area, the small size of the carbon-oxygen functional groups and the micro-open 3D graphite structures. These properties provide sufficient space for ion storage, hierarchical porous channels for ion transfer and a carbon matrix with high conductivity for electron transfer [46]. Breczko et al. prepared composites of CNOs and poly(diallyldimethylammonium chloride) (PDDA) or chitosan (chit), and the electrochemical properties were tested and investigated [47]. In another study, CNO–PDDA composite films for dopamine detection were prepared in the presence of ascorbic acid and uric acid in solution [48]. The research group of Giordani et al. prepared a novel near-infrared (NIR)-fluorescent carbon-based nanomaterial, which consists of boron-difluoride azadipyrromethene fluorophores covalently bonded to carbon nano-onions [49]. The cytotoxicity and immunomodulatory properties of the synthesized fluorescein CNO derivative were elucidated and compared with similarly functionalized CNTs. CNOs were found to exhibit efficient cellular uptake, mild inflammatory potential, and low cytotoxicity. These discoveries make CNOs promising materials for biomedical application areas. Moreover, due to a novel concentric graphitic shell structure and a large surface area, CNOs possess many excellent physical properties, such as high electrical conductivity and can be used in the fields of magnetic and gas storage materials, lubricants, for nanoreactors or as substrates for catalyst carriers and electrochemical capacitors [49].

References

  1. Azwar, E.; Wan Mahari, W.A.; Chuah, J.H.; Vo, D.-V.N.; Ma, N.L.; Lam, W.H.; Lam, S.S. Transformation of biomass into carbon nanofiber for supercapacitor application—A review. Int. J. Hydrogen Energy 2018, 43, 20811–20821.
  2. Wang, T.; Rony, A.H.; Sun, K.; Gong, W.; He, X.; Lu, W.; Tang, M.; Ye, R.; Yu, J.; Kang, L.; et al. Carbon Nanofibers Prepared from Solar Pyrolysis of Pinewood as Binder-free Electrodes for Flexible Supercapacitors. Cell Rep. Phys. Sci. 2020, 1, 100079.
  3. Du, B.; Chen, C.; Sun, Y.; Yu, M.; Liu, B.; Wang, X.; Zhou, J. Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polym. Test. 2020, 89, 106591.
  4. Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol. 2020, 214, 106686.
  5. Du, B.; Chen, C.; Sun, Y.; Yang, M.; Yu, M.; Liu, B.; Wang, X.; Zhou, J. Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int. J. Biol. Macromol. 2020, 156, 669–680.
  6. Dineshkumar, M.; Meera Sheriffa Begum, K.M.; Shrikar, B.; Ramanathan, A. Synthesis and characterization study of solid carbon biocatalyst produced from novel biomass char in a microwave pyrolysis. Mater. Today Proc. 2020.
  7. Duran-Jimenez, G.; Monti, T.; Titman, J.J.; Hernandez-Montoya, V.; Kingman, S.W.; Binner, E.R. New insights into microwave pyrolysis of biomass: Preparation of carbon-based products from pecan nutshells and their application in wastewater treatment. J. Anal. Appl. Pyrolysis 2017, 124, 113–121.
  8. Wan, W.; Zhao, W.; Wu, Y.; Dai, C.; Zhu, X.; Wang, Y.; Qin, J.; Chen, T.; Lü, Z. A highly efficient biomass based electrocatalyst for cathodic performance of lithium–oxygen batteries: Yeast derived hydrothermal carbon. Electrochim. Acta 2020, 349, 136411.
  9. Zhang, S.; Yin, H.; Wang, J.; Zhu, S.; Xiong, Y. Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts. Energy 2021, 216, 119285.
  10. Unur, E.; Brutti, S.; Panero, S.; Scrosati, B. Nanoporous carbons from hydrothermally treated biomass as anode materials for lithium ion batteries. Microporous Mesoporous Mater. 2013, 174, 25–33.
  11. Dey, S.; Bano, F.; Malik, A. Pharmaceuticals and personal care product (PPCP) contamination—A global discharge inventory. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Butterworth-Heinemann, Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 1–26. ISBN 9780128161890.
  12. Chaniotakis, N.; Vamvakaki, V.; Tsagaraki, K.; Chaniotakis, N. Carbon Nanofiber-Based Glucose Biosensor Carbon Nanofiber-Based Glucose Biosensor. Anal. Chem. 2006, 78, 5538–5542.
  13. Tran, P.A.; Zhang, L.; Webster, T.J. Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 1097–1114.
  14. Swisher, L.Z.; Prior, A.M.; Gunaratna, M.J.; Shishido, S.; Madiyar, F.; Nguyen, T.A.; Hua, D.H.; Li, J. Quantitative electrochemical detection of cathepsin B activity in breast cancer cell lysates using carbon nanofiber nanoelectrode arrays toward identification of cancer formation. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1695–1704.
  15. Olenic, L.; Mihailescu, G.; Pruneanu, S.; Lupu, D.; Biris, A.R.; Margineanu, P.; Garabagiu, S.; Biris, A.S. Investigation of carbon nanofibers as support for bioactive substances. J. Mater. Sci. Mater. Med. 2009, 20, 177–183.
  16. Nguyen-Vu, T.D.B.; Chen, H.; Cassell, A.M.; Andrews, R.J.; Meyyappan, M.; Li, J. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans. Biomed. Eng. 2007, 54, 1121–1128.
  17. Webster, T.J.; Waid, M.C.; McKenzie, J.L.; Price, R.L.; Ejiofor, J.U. Nano-biotechnology: Carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology 2004, 15, 48–54.
  18. Khang, D.; Sato, M.; Price, R.L.; Ribbe, A.E.; Webster, T.J. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns. Int. J. Nanomed. 2006, 1, 65–72.
  19. Aoki, K.; Haniu, H.; Kim, Y.A.; Saito, N. The use of electrospun organic and carbon nanofibers in bone regeneration. Nanomaterials 2020, 10, 562.
  20. Pilehvar-Soltanahmadi, Y.; Dadashpour, M.; Mohajeri, A.; Fattahi, A.; Sheervalilou, R.; Zarghami, N. An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini Rev. Med. Chem. 2017, 18, 414–427.
  21. Sylvester, M.A.; Amini, F.; Keat, T.C. Electrospun nanofibers in wound healing. Mater. Today Proc. 2019, 29, 1–6.
  22. Saito, N.; Aoki, K.; Usui, Y.; Shimizu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem. Soc. Rev. 2011, 40, 3824–3834.
  23. Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 2014, 49, 463–480.
  24. Smolka, W.; Panek, A.; Gubernat, M.; Szczypta-Fraczek, A.; Jelen, P.; Paluszkiewicz, C.; Markowski, J.; Blazewicz, M. Structure and Biological Properties of Surface-Engineered Carbon Nanofibers. J. Nanomater. 2019, 2019, 4146190.
  25. Li, Z.; Milionis, A.; Zheng, Y.; Yee, M.; Codispoti, L.; Tan, F.; Poulikakos, D.; Yap, C.H. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion. In Proceedings of the Nature Communications; Springer: New York, NY, USA, 2019; Volume 10.
  26. Ding, Y.; Li, W.; Zhang, F.; Liu, Z.; Zanjanizadeh Ezazi, N.; Liu, D.; Santos, H.A. Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Adv. Funct. Mater. 2019, 29, 1802852.
  27. Scaffaro, R.; Maio, A.; Lopresti, F.; Botta, L. Nanocarbons in electrospun polymeric nanomats for tissue engineering: A review. Polymers 2017, 9, 76.
  28. Ngadiman, N.H.A.; Noordin, M.Y.; Idris, A.; Kurniawan, D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 597–616.
  29. Ma, G.; Fang, D.; Liu, Y.; Zhu, X.; Nie, J. Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr. Polym. 2012, 87, 737–743.
  30. Xu, C.; Inai, R.; Kotaki, M.; Ramakrishna, S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 2004, 10, 1160–1168.
  31. Ndreu, A.; Nikkola, L.; Ylikauppila, H.; Ashammakhi, N.; Hasirci, V. Electrospun biodegradable nanofibrous mats for tissue engineering. Nanomedicine 2008, 3, 45–60.
  32. Heidari, M.; Bahrami, S.H.; Ranjbar-Mohammadi, M.; Milan, P.B. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater. Sci. Eng. C 2019, 103, 109768.
  33. Yadav, D.; Amini, F.; Ehrmann, A. Recent advances in carbon nanofibers and their applications—A review. Eur. Polym. J. 2020, 138, 109963.
  34. Nekounam, H.; Allahyari, Z.; Gholizadeh, S.; Mirzaei, E.; Shokrgozar, M.A.; Faridi-Majidi, R. Simple and robust fabrication and characterization of conductive carbonized nanofibers loaded with gold nanoparticles for bone tissue engineering applications. Mater. Sci. Eng. C 2020, 117, 111226.
  35. Samadian, H.; Mobasheri, H.; Hasanpour, S.; Ai, J.; Azamie, M.; Faridi-Majidi, R. Electro-conductive carbon nanofibers as the promising interfacial biomaterials for bone tissue engineering. J. Mol. Liq. 2020, 298, 112021.
  36. Stocco, T.D.; Antonioli, E.; Romagnolli, M.L.; Sousa, G.F.; Ferretti, M.; Lobo, A.O. Aligned biomimetic scaffolds based on carbon nanotubes-reinforced polymeric nanofibers for knee meniscus tissue engineering. Mater. Lett. 2020, 264, 127351.
  37. Patel, K.D.; Kim, T.H.; Mandakhbayar, N.; Singh, R.K.; Jang, J.H.; Lee, J.H.; Kim, H.W. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses. Acta Biomater. 2020, 108, 97–110.
  38. Serafin, A.; Murphy, C.; Rubio, M.C.; Collins, M.N. Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Mater. Sci. Eng. C 2021, 122, 111927.
  39. Zhijiang, C.; Cong, Z.; Jie, G.; Qing, Z.; Kongyin, Z. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility. Mater. Sci. Eng. C 2018, 82, 29–40.
  40. Dai, J.; Luo, Y.; Nie, D.; Jin, J.; Yang, S.; Li, G.; Yang, Y.; Zhang, W. pH/photothermal dual-responsive drug delivery and synergistic chemo-photothermal therapy by novel porous carbon nanofibers. Chem. Eng. J. 2020, 397, 125402.
  41. Abdal-hay, A.; Taha, M.; Mousa, H.M.; Bartnikowski, M.; Hassan, M.L.; Dewidar, M.; Ivanovski, S. Engineering of electrically-conductive poly(ε-caprolactone)/ multi-walled carbon nanotubes composite nanofibers for tissue engineering applications. Ceram. Int. 2019, 45, 15736–15740.
  42. Shrestha, B.K.; Shrestha, S.; Tiwari, A.P.; Kim, J.I.; Ko, S.W.; Kim, H.J.; Park, C.H.; Kim, C.S. Bio-inspired hybrid scaffold of zinc oxide-functionalized multi-wall carbon nanotubes reinforced polyurethane nanofibers for bone tissue engineering. Mater. Des. 2017, 133, 69–81.
  43. Mamidi, N.; Delgadillo, R.M.V.; Ortiz, A.G.; Barrera, E.V. Carbon nano-onions reinforced multilayered thin film system for stimuli-responsive drug release. Pharmaceutics 2020, 12, 1208.
  44. Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M.E. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorg. Chim. Acta 2017, 468, 49–66.
  45. Ahlawat, J.; Masoudi Asil, S.; Guillama Barroso, G.; Nurunnabi, M.; Narayan, M. Application of carbon nano onions in the biomedical field: Recent advances and challenges. Biomater. Sci. 2021, 9, 626–644.
  46. Jin, H.; Wu, S.; Li, T.; Bai, Y.; Wang, X.; Zhang, H.; Xu, H.; Kong, C.; Wang, H. Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors. Appl. Surf. Sci. 2019, 488, 593–599.
  47. Breczko, J.; Winkler, K.; Plonska-Brzezinska, M.E.; Villalta-Cerdas, A.; Echegoyen, L. Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes. J. Mater. Chem. 2010, 20, 7761–7768.
  48. Breczko, J.; Plonska-Brzezinska, M.E.; Echegoyen, L. Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim. Acta 2012, 72, 61–67.
  49. Giordani, S.; Bartelmess, J.; Frasconi, M.; Biondi, I.; Cheung, S.; Grossi, M.; Wu, D.; Echegoyen, L.; O’Shea, D.F. NIR fluorescence labelled carbon nano-onions: Synthesis, analysis and cellular imaging. J. Mater. Chem. B 2014, 2, 7459–7463.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.3K
Entry Collection: Environmental Sciences
Revisions: 3 times (View History)
Update Date: 02 May 2021
1000/1000
Video Production Service