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Carbon nanofibers are nano-sized fibers that have a high degree of crystalline orientation. In recent years,

ecological issues have led to the search for new green materials from biomass as precursors for producing carbon

materials. Such green materials are more attractive than traditional petroleum-based materials, which are

environmentally harmful and non-biodegradable.
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1. Introduction

Increasing environmental awareness and ecological problems have led in recent years to new green materials

made from biomass as precursors for the production of carbon materials receiving more research attention, as they

seemed to be more attractive than traditional petroleum-based materials, which are polluting, toxic and non-

biodegradable . At the same time, there is a need to develop cleaner, more economical, efficient and energy-

saving materials and to focus the world’s attention on the new green, renewable energies. Converting biomass

waste into carbon materials can help solve the problem of pollution and improve traditional processing methods for

producing carbon in the face of the energy crisis and environmental problems . Low-cost renewable biomass

materials, such as sawdust, wood residues, rice husks, and corn stover, among many others, are available in large

quantities as waste from forestry and agriculture. These renewable biomass materials can be considered promising

candidates for carbon precursors .

Various techniques for synthesizing carbon nanofibers from biomass, such as electrospinning, pyrolysis,

hydrothermal treatment, and ultrasonic treatment, are already known and have already been explained by many

research groups .

Most of the techniques are complicated and require extensive use of energy resources. For example, the

production of carbon nanofibers from hazelnut shell biomass as a carbon resource by hydrothermal technique goes

through a series of complex processes, such as hydrothermal carbonization, heat treatment, potassium hydroxide

activation, magnesium oxide templating to produce anode materials for lithium-ion batteries at the end of the

process .

2. Carbon Nanofibers Application in Biotechnological and
Medical Fields
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Today’s medicine progresses greatly and applies more therapeutic solutions based on the field of nanotechnology

and nanomaterials. High-performance materials, such as carbon nanotubes, graphene, or carbon nanofibers, have

already established their place in developing new implants and medical devices . Due to their properties, high

electrical conductivity, unique surface characteristics, and biomimetic shape, these nanomaterials are ideal for

constructing implantable electrodes and biosensors. In addition, they can serve as tissue substrates for in vitro and

in vivo applications. For this reason, stimulation of an electric field can regulate cell behavior both in vivo and in

vitro due to the conductive properties of carbon substrates. Nanofibers resemble the natural structure of cell

assembly and can be used in the form of porous mats as membranes for medical reconstruction, substrates for

bone and cartilage development in post-traumatic tissues .

Carbon nanofibers are promising candidates for diverse medical applications thanks to their physical properties.

Due to their conductivity, they can be used as biosensors and electrodes to stimulate the nervous system, as well

as for the fabrication of scaffolds for regenerative medicine. As nonwovens, mats, membranes, or other various

types of nanocomposites, nanofibers can be used in many biotechnological fields . Aoki et al.

investigated the application potential of organic nanofibers and electrospun carbon nanofibers for bone

regenerative medicine .

Previously, the research focus centered on coating nanofiber mates with antibacterial substances. The efficacy of

silver nanoparticles and the active healing properties of chitosan polymer hydrogels received numerous

publications. With the development of electrospinning processes, the research focus increasingly shifted to

electrospun nanofibers, which exhibit antimicrobial properties through the addition of nanoparticles . Due to

their high mechanical strength and good biocompatibility, carbon-based nanofibers offer further areas of application

in biomedicine .

In 2019 Li et al. conducted a study of a superhydrophobic hemostatic material made from a nanocomposite

dispersion of a dense network of carbon nanofibers and polytetrafluoroethylene (PTFE) or poly-dimethylsiloxane

(PDMS) on support . This nanofiber material has been used for its particular and distinctive way of blood

coagulation, which allows rapid blood coagulation due to the presence of microfibers and reduces subsequent

blood loss, regardless of the pressure applied, due to its superhydrophobic characteristics.

In tissue engineering for regeneration or organ reconstitution, cells are designed to attach, proliferate, multiply and

regenerate multiple organs, such as skin, bone, cartilage, muscle, tendons, heart, nerves, and blood vessels.

These strategies depend on appropriate biochemical and physicochemical properties and molecular influences or

control of cellular behavior . Carbon nanofibers are potential candidates for tissue engineering applications

because they have suitable physical, structural, mechanical, and biological properties . In addition, carbon

nanofibers have exceptional mechanical properties, conductivity, and excellent cytocompatibility properties, as well

as osteoblast adhesion, which are suitable for neural and bone tissue engineering applications. In terms of carbon

nanofiber adhesion and proliferation, they show the interaction of astrocytes like glial scar tissue-forming cells.

These functions of astrocytes make them able to minimize nanoscale fibers and scar tissue formation, reduce the
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glial scar tissue formation and show positive interaction with neurons, which would be a great support for neural

implants .

Recent research indicates that carbon-based nanomaterials are potential candidates for biomedical applications,

including drug delivery, repair and regeneration of various tissues, including nerves, muscles, bones, and for

imaging . Stocco et al. have investigated that carbon nanofibers have strong mechanical properties

capable of surviving without affecting mesenchymal stem cells for tissue engineering of the knee meniscus .

Samadian et al. and Patel et al. have found that carbon nanofibers are promising platforms with a nanoscale

surface area that are helpful for tissue healing and bone regeneration process through anti-inflammation, pro-

angiogenesis and stem cell stimulation . The research group of Serafin et al. has presented that the

electrically conductive properties of carbon nanofibers can be used in cardiac or neural tissue engineering

applications . In addition, carbon nanofiber composites have special properties, such as large specific area, high

porosity, good biodegradability, cytocompatibility and conductivity, etc., making them ideal candidates in the field of

tissue engineering and biological medicine .

In addition, there is a wide range of further carbon nanostructures such as carbon nanotubes, carbon nanofibers,

carbon nano-onions (CNOs), graphene, which have attracted a lot of attention recently due to the promising

industrial application areas. Onion-like quasi-spherical CNPs (OCNPs) with hollow cage-like concentric graphene

shells have been known since 1992 but are still under-researched compared to other allotropic forms of

nanocarbons, such as carbon nanotubes, carbon fibers, fullerenes, graphene, and carbon dots. CNOs are a niche

product that has not been explored as much as other carbon nanostructures and offer many advantages, unlike

other carbon nanostructures. They exhibit lower toxicity, have one of the exceptional biocompatibilities and are,

therefore, of particular interest for medical and biotechnological applications, such as imaging, drug delivery, tissue

engineering, sensing and as . Excellent electrochemical performance is offered by CNOs due to their high

surface area, the small size of the carbon-oxygen functional groups and the micro-open 3D graphite structures.

These properties provide sufficient space for ion storage, hierarchical porous channels for ion transfer and a

carbon matrix with high conductivity for electron transfer . Breczko et al. prepared composites of CNOs and

poly(diallyldimethylammonium chloride) (PDDA) or chitosan (chit), and the electrochemical properties were tested

and investigated . In another study, CNO–PDDA composite films for dopamine detection were prepared in the

presence of ascorbic acid and uric acid in solution . The research group of Giordani et al. prepared a novel near-

infrared (NIR)-fluorescent carbon-based nanomaterial, which consists of boron-difluoride azadipyrromethene

fluorophores covalently bonded to carbon nano-onions . The cytotoxicity and immunomodulatory properties of

the synthesized fluorescein CNO derivative were elucidated and compared with similarly functionalized CNTs.

CNOs were found to exhibit efficient cellular uptake, mild inflammatory potential, and low cytotoxicity. These

discoveries make CNOs promising materials for biomedical application areas. Moreover, due to a novel concentric

graphitic shell structure and a large surface area, CNOs possess many excellent physical properties, such as high

electrical conductivity and can be used in the fields of magnetic and gas storage materials, lubricants, for

nanoreactors or as substrates for catalyst carriers and electrochemical capacitors .
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