Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 312 2024-09-25 09:54:14 |
2 formatted Meta information modification 312 2024-09-25 10:09:11 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Mendonça, S.; Oliveira, A.A.; Pestana, D.; Rocha, M.L. Count Random Variables. Encyclopedia. Available online: https://encyclopedia.pub/entry/57131 (accessed on 15 November 2024).
Mendonça S, Oliveira AA, Pestana D, Rocha ML. Count Random Variables. Encyclopedia. Available at: https://encyclopedia.pub/entry/57131. Accessed November 15, 2024.
Mendonça, Sandra, António Alberto Oliveira, Dinis Pestana, Maria Luísa Rocha. "Count Random Variables" Encyclopedia, https://encyclopedia.pub/entry/57131 (accessed November 15, 2024).
Mendonça, S., Oliveira, A.A., Pestana, D., & Rocha, M.L. (2024, September 25). Count Random Variables. In Encyclopedia. https://encyclopedia.pub/entry/57131
Mendonça, Sandra, et al. "Count Random Variables." Encyclopedia. Web. 25 September, 2024.
Peer Reviewed
Count Random Variables

The observation of randomness patterns serves as guidance for the craft of probabilistic modelling. The most used count models—Binomial, Poisson, Negative Binomial—are the discrete Morris’ natural exponential families whose variance is at most quadratic on the mean, and the solutions of Katz–Panjer recurrence relation, aside from being members of the generalised power series and hypergeometric distribution families, and this accounts for their many advantageous characteristics. Some other basic count models are also described, as well as models with less obvious but useful randomness patterns in connection with maximum entropy characterisations, such as Zipf and Good models. Simple tools, such as truncation, thinning, or parameter randomisation, are straightforward ways of constructing other count models.

discrete models count random variables Panjer’s family hierarchical models

For any 𝒮={𝑥𝑘}𝑘𝕂, with 𝕂0={0,1,}, and for any sequence {𝑝𝑘}𝑘𝕂 such that 𝑝𝑘0 for any 𝑘𝕂 and

is a discrete lattice random variable with support 𝒮 and probability mass function {𝑝𝑘}𝑘𝕂. If 𝑥𝑘=𝑘0, X is a count random variable.

In most cases, the probability mass function {𝑝𝑘}𝑘𝕂 is not interesting, since it is difficult to deal with and there is no clear interpretation of the pattern of randomness it describes. The craft of probabilistic modelling (Gani (1986) [1]) uses a diversity of criteria to describe and select models, namely, those arising from randomness patterns (such as counts in Bernoulli trials, sampling with or without replacement, and random draws from urns). Another source of the rationale description of count models are characterisation theorems based on structural properties (e.g., a power series distribution with mean = variance, or maximum Shannon entropy with prescribed arithmetic and/or geometric mean). Recurrence relationships (for instance, ) or mathematical properties (for instance, the variance being at most a quadratic function of the expectation) also define interesting families of discrete random variables. On the other hand, asymptotic properties such as arithmetic properties, namely, infinite divisibility, discrete self-decomposability, and stability, serve as guidance in model choice.

References

  1. Gani, J. The Craft of Probabilistic Modelling: A Collection of Personal Accounts; Springer: New York, NY, USA, 1986.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 187
Online Date: 25 Sep 2024
1000/1000
ScholarVision Creations