Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 4578 2023-03-09 11:09:52 |
2 Revised -3355 word(s) 1223 2023-03-09 11:14:12 | |
3 format correct -9 word(s) 1214 2023-03-10 01:31:08 | |
4 format correct Meta information modification 1214 2023-03-10 02:03:11 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Efremenko, E.; Aslanli, A.; Lyagin, I. Origins of Recombinant Toxins. Encyclopedia. Available online: https://encyclopedia.pub/entry/42015 (accessed on 15 November 2024).
Efremenko E, Aslanli A, Lyagin I. Origins of Recombinant Toxins. Encyclopedia. Available at: https://encyclopedia.pub/entry/42015. Accessed November 15, 2024.
Efremenko, Elena, Aysel Aslanli, Ilya Lyagin. "Origins of Recombinant Toxins" Encyclopedia, https://encyclopedia.pub/entry/42015 (accessed November 15, 2024).
Efremenko, E., Aslanli, A., & Lyagin, I. (2023, March 09). Origins of Recombinant Toxins. In Encyclopedia. https://encyclopedia.pub/entry/42015
Efremenko, Elena, et al. "Origins of Recombinant Toxins." Encyclopedia. Web. 09 March, 2023.
Origins of Recombinant Toxins
Edit

Toxins produced by various living organisms (bacteria, yeast, scorpions, snakes, spiders and other living organisms) are the main pathogenic factors causing severe diseases and poisoning of humans and animals. To date, recombinant forms of these toxins are widely used as antimicrobial agents, anticancer drugs, vaccines, etc. Various modifications, which in this case can be introduced into such recombinant proteins, can lead to a weakening of the toxic potency of the resulting toxins or, conversely, increase their toxicity. Thus, it is important to publicly discuss the situations and monitor the emergence of such developments.

protein recombinant toxin antivenom vaccines killer toxins enzymatic antidots

1. Introduction

To date, recombinant toxins from various biological sources (bacteria, yeast, scorpions, snakes, spiders and other living organisms) are widely used as: (i) antimicrobial agents for medical purposes, as well as antimicrobial additives for the food and biotechnological industries, (ii) groundwork for the creation of drugs with anticancer activity and the treatment of neurodegenerative diseases and (iii) the basis to develop vaccines, etc. Multiple works have been performed to study the mechanisms of action of genetically modified toxins and their applications [1][2][3][4][5][6] (Figure 1).
Figure 1. Various applications of recombinant toxins.
The protein/polypeptide nature of most of these natural toxins allows them to obtain their recombinant forms. The potential for developing these biomolecules in high enough quantities is the basis for further advancements in developing vaccines and drugs with reduced cost and their widespread use, on the one hand. On the other hand, the production of recombinant toxins avoids the need to work directly with the natural sources of these biomolecules (animals and microbial pathogens). Obtaining genetic constructs encoding the synthesis of recombinant toxins expands the possibilities of their synthesis in special modified forms. Like many recombinant proteins, recombinant toxins can be obtained in high yields using different expression systems, including extracellular secretion, and further isolated and finely purified using affine carriers [7][8].

2. Spectrum of Recombinant Toxins and Their Origins

Most of proteinaceous toxins well-studied to date are produced by various bacteria. However, toxins that are found in yeast, snake, scorpion and spider venoms and other living organisms are also actively studied by various scientific groups today. Recombinant toxins obtained from various origins and purposes of their obtaining are presented in Table 1 [9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64].

3. Diversity of Modern Purposes for Obtaining Recombinant Toxins

Finding ways of obtaining effective antibodies and the development of vaccines against recombinant toxins is one of the main goals today [65][66]. For maximal quality and efficiency of immunologic medications, initial toxins should be highly purified, be in sufficient quantities and stimulate selective immune response. Recombinant toxins’ production solves the first two issues, though vaccines can still have cross-specificity.

4. Prediction of Toxicity of Synthetic Recombinant Proteins

The majority of the publications of recent years emphasize the importance of using bioinformatics methods to identify new variants of toxins and clarify the mechanisms of their toxic effects. Molecular modeling facilitates the understanding of the interaction of toxins with their receptors and/or targets, especially when these compounds are bound to the membrane, and biochemical approaches to the study of these processes are complex [67]. Due to advances in synthetic biology, the cost and time required for the development and synthesis of individual recombinant products are steadily decreasing. Many research laboratories regularly create genetically modified proteins as a part of their research activities. However, manipulations of amino acid sequences in proteins can lead to the unintended production of protein toxins. Therefore, the ability to determine the toxicity of a protein before its synthesis reduces the risk of the potential danger of synthetic production of protein toxins. For this purpose, various methods based on machine learning are being developed to predict the toxicity of proteins in silico based on a number of initial data (Figure 2).
Figure 2. Machine-learning methods based tools for protein toxicity prediction.

5. Potential Enzymatic Antidotes for Recombinant Toxins

Due to the wide variety of toxins known to date and differences in the mechanisms of their action, there is an urgent need to create antidotes that both have a specific effect and are active against a wide range of toxins. The main directions of antidote development today are either the creation of various inhibitors capable of blocking the sites of binding of toxins to targets or the production of proteins (usually antibodies) capable of acting as bioscavengers via binding directly to the toxins themselves, thereby limiting their interactions with targets [68]. However, the search and development of new antidotes based on other principals, namely using molecules capable of detoxifying toxins by their enzymatic transformation into less toxic or nontoxic molecules, may become a promising alternative to existing solutions. To date, several enzymes are known that can act as antitoxins against various bacterial toxic substances, as well as enzymes that exhibit hydrolytic activity against PrP (Table 2, [69][70][71][72][73][74][75][76][77]).

References

  1. Kondakova, O.A.; Nikitin, N.A.; Evtushenko, E.A.; Ryabchevskaya, E.M.; Atabekov, J.G.; Karpova, O.V. Vaccines against anthrax based on recombinant protective antigen: Problems and solutions. Expert Rev. Vaccines 2019, 18, 813–828.
  2. Fleming, B.D.; Ho, M. Generation of single-domain antibody-based recombinant immunotoxins. In Single-Domain Antibodies; Humana: New York, NY, USA, 2022; Volume 2446, pp. 489–512.
  3. Doxey, A.C.; Mansfield, M.J.; Montecucco, C. Discovery of novel bacterial toxins by genomics and computational biology. Toxicon 2018, 147, 2–12.
  4. Aruwa, C.E.; Mukaila, Y.O.; Ajao, A.A.-N.; Sabiu, S. An appraisal of antidotes’ effectiveness: Evidence of the use of phyto-antidotes and biotechnological advancements. Molecules 2020, 25, 1516.
  5. Yu, X.; Gao, X.; Zhu, K.; Yin, H.; Mao, X.; Wojdyla, J.A.; Qin, B.; Huang, H.; Wang, M.; Sun, Y.-C.; et al. Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun. Biol. 2020, 3, 216.
  6. Yao, J.; Zhen, X.; Tang, K.; Liu, T.; Xu, X.; Chen, Z.; Guo, Y.; Liu, X.; Wood, T.K.; Ouyang, S.; et al. Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system. Nucleic Acids Res. 2020, 48, 11054–11067.
  7. Wang, X.; Lord, D.M.; Cheng, H.Y.; Osbourne, D.O.; Hong, S.H.; Sanchez-Torres, V.; Quiroga, C.; Zheng, K.; Herrmann, T.; Peti, W.; et al. A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 2012, 8, 855–861.
  8. Marimon, O.; Teixeira, J.M.; Cordeiro, T.N.; Soo, V.W.; Wood, T.L.; Mayzel, M.; Amata, I.; Garcia, J.; Morera, A.; Gay, M.; et al. An oxygen-sensitive toxin-antitoxin system. Nat. Commun. 2016, 7, 13634.
  9. Jankevicius, G.; Ariza, A.; Ahel, M.; Ahel, I. The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA. Mol. Cell 2016, 64, 1109–1116.
  10. Saunders, S.E.; Bartz, J.C.; Vercauteren, K.C.; Bartelt-Hunt, S.L. Enzymatic digestion of chronic wasting disease prions bound to soil. Environ. Sci. Technol. 2010, 44, 4129–4135.
  11. Pilon, J.L.; Nash, P.B.; Arver, T.; Hoglund, D.; VerCauteren, K.C. Feasibility of infectious prion digestion using mild conditions and commercial subtilisin. J. Virol. Methods 2009, 161, 168–172.
  12. Dabbagh, F.; Negahdaripour, M.; Berenjian, A.; Behfar, A.; Mohammadi, F.; Zamani, M.; Irajie, C.; Ghasemi, Y. Nattokinase: Production and application. Appl. Microbiol. Biotechnol. 2014, 98, 9199–9206.
  13. Hassan, M.A.; Abol-Fotouh, D.; Omer, A.M.; Tamer, T.M.; Abbas, E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int. J. Biol. Macromol. 2020, 154, 567–583.
  14. Chessa, R.; Landolfo, S.; Ciani, M.; Budroni, M.; Zara, S.; Ustun, M.; Cakar, Z.P.; Mannazzu, I. Biotechnological exploitation of Tetrapisisporaphaffii killer toxin: Heterologous production in Komagataellaphaffii (Pichia pastoris). Appl. Microbiol. Biotechnol. 2017, 101, 2931–2942.
  15. Salazar, M.H.; Clement, H.; Corrales-García, L.L.; Sánchez, J.; Cleghorn, J.; Zamudio, F.; Possani, L.D.; Acosta, H.; Corzo, G. Heterologous expression of four recombinant toxins from Panamanian scorpions of the genus Tityus and Centruroides for production of antivenom. Toxicon 2022, 13, 100090.
  16. Timofeev, S.; Mitina, G.; Rogozhin, E.; Dolgikh, V. Expression of spider toxin in entomopathogenic fungus Lecanicilliummuscarium and selection of the strain showing efficient secretion of the recombinant protein. FEMS Microbiol. Lett. 2019, 366, fnz181.
  17. Esipov, R.S.; Stepanenko, V.N.; Zvereva, I.O.; Makarov, D.A.; Kostromina, M.A.; Kostromina, T.I.; Muravyova, T.I.; Miroshnikov, A.I.; Grishin, E.V. Biotechnological method for production of recombinant peptide analgesic (purotoxin-1) from Geolycosa sp. spider poison. Russ. J. Bioorganic Chem. 2018, 44, 32–40.
  18. Shelukhina, I.V.; Zhmak, M.N.; Lobanov, A.V.; Ivanov, I.A.; Garifulina, A.I.; Kravchenko, I.N.; Rasskazova, E.A.; Salmova, M.A.; Tukhovskaya, E.A.; Rykov, V.A.; et al. Azemiopsin, a selective peptide antagonist of muscle nicotinic acetylcholine receptor: Preclinical evaluation as a local muscle relaxant. Toxins 2018, 10, 34.
  19. Babenko, V.V.; Ziganshin, R.H.; Weise, C.; Dyachenko, I.; Shaykhutdinova, E.; Murashev, A.N.; Zhmak, M.; Starkov, V.; Hoang, A.N.; Tsetlin, V.; et al. Novel bradykinin-potentiating peptides and three-finger toxins from viper venom: Combined NGS venom gland transcriptomics and quantitative venom proteomics of the Azemiops feae viper. Biomedicines 2020, 8, 249.
  20. Romero-Giraldo, L.E.; Pulido, S.; Berrío, M.A.; Flórez, M.F.; Rey-Suárez, P.; Nuñez, V.; Pereañez, J.A. Heterologous expression and immunogenic potential of the most abundant phospholipase a2 from coral snake Micrurus dumerilii to develop antivenoms. Toxins 2022, 14, 825.
  21. Esipov, R.S.; Makarov, D.A.; Stepanenko, V.N.; Kostromina, M.A.; Muravyova, T.I.; Andreev, Y.A.; Dyachenko, I.A.; Kozlov, S.A.; Grishin, E.V. Pilot production of the recombinant peptide toxin of Heteractis crispa as a potential analgesic by intein-mediated technology. Protein Expr. Purif. 2018, 145, 71–76.
  22. Tereshin, M.N.; Komyakova, A.M.; Stepanenko, V.N.; Myagkikh, I.V.; Shoshina, N.S.; Korolkova, Y.V.; Leychenko, E.V.; Kozlov, S.A. Optimized method for the recombinant production of a sea anemone’s peptide. Mendeleev Commun. 2022, 32, 745–746.
  23. Fellermann, M.; Stemmer, M.; Noschka, R.; Wondany, F.; Fischer, S.; Michaelis, J.; Stenger, S.; Barth, H. Clostridium botulinum C3 toxin for selective delivery of cargo into dendritic cells and macrophages. Toxins 2022, 14, 711.
  24. Fellermann, M.; Huchler, C.; Fechter, L.; Kolb, T.; Wondany, F.; Mayer, D.; Michaelis, J.; Stenger, S.; Mellert, K.; Möller, P.; et al. Clostridial C3 toxins enter and intoxicate human dendritic cells. Toxins 2020, 12, 563.
  25. Eisele, J.; Schreiner, S.; Borho, J.; Fischer, S.; Heber, S.; Endres, S.; Fellermann, M.; Wohlgemuth, L.; Huber-Lang, M.; Fois, G.; et al. The pore- forming subunit C2IIa of the binary Clostridium botulinum C2 toxin reduces the chemotactic translocation of human polymorphonuclear leukocytes. Front. Pharmacol. 2022, 13, 810611.
  26. El-Chami, D.; Al Haddad, M.; Abi-Habib, R.; El-Sibai, M. Recombinant anthrax lethal toxin inhibits cell motility and invasion in breast cancer cells through the dysregulation of Rho GTPases. Oncol. Lett. 2021, 21, 163.
  27. Rudenko, N.; Nagel, A.; Zamyatina, A.; Karatovskaya, A.; Salyamov, V.; Andreeva-Kovalevskaya, Z.; Siunov, A.; Kolesnikov, A.; Shepelyakovskaya, A.; Boziev, K.; et al. A monoclonal antibody against the C-terminal domain of Bacillus cereus hemolysin II inhibits HlyII cytolytic activity. Toxins 2020, 12, 806.
  28. Rudenko, N.; Siunov, A.; Zamyatina, A.; Melnik, B.; Nagel, A.; Karatovskaya, A.; Borisova, M.; Shepelyakovskaya, A.; Andreeva-Kovalevskaya, Z.; Kolesnikov, A.; et al. The C-terminal domain of Bacillus cereus hemolysin II oligomerizes by itself in the presence of cell membranes to form ion channels. Int. J. Biol. Macromol. 2022, 200, 416–427.
  29. Maksimov, I.V.; Blagova, D.K.; Veselova, S.V.; Sorokan, A.V.; Burkhanova, G.F.; Cherepanova, E.A.; Sarvarova, E.R.; Rumyantsev, S.D.; Alekseev, V.Y.; Khayrullin, R.M. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and greenbug Schizaphis graminum Rond. Biol. Control 2020, 144, 104242.
  30. Zakharzhevskaya, N.B.; Tsvetkov, V.B.; Vanyushkina, A.A.; Varizhuk, A.M.; Rakitina, D.V.; Podgorsky, V.V.; Vishnyakov, I.E.; Kharlampieva, D.D.; Manuvera, V.A.; Lisitsyn, F.V.; et al. Interaction of bacteroides fragilis toxin with outer membrane vesicles reveals new mechanism of its secretion and delivery. Front. Cell. Infect. Microbiol. 2017, 7, 2.
  31. Voltà-Durán, E.; Sánchez, J.M.; Parladé, E.; Serna, N.; Vazquez, E.; Unzueta, U.; Villaverde, A. The Diphtheria toxin translocation domain impairs receptor selectivity in cancer cell-targeted protein nanoparticles. Pharmaceutics 2022, 14, 2644.
  32. Manoilov, K.Y.; Labyntsev, A.J.; Korotkevych, N.V.; Maksymovych, I.S.; Kolybo, D.V.; Komisarenko, S.V. Particular features of diphtheria toxin internalization by resistant and sensitive mammalian cells. Cytol. Genet. 2018, 52, 353–359.
  33. Chalenko, Y.; Sobyanin, K.; Sysolyatina, E.; Midiber, K.; Kalinin, E.; Lavrikova, A.; Mikhaleva, L.; Ermolaeva, S. Hepatoprotective Activity of InlB321/15, the HGFR Ligand of Bacterial Origin, in CCI4-Induced Acute Liver Injury Mice. Biomedicines 2019, 7, 29.
  34. Abramov, V.M.; Kosarev, I.V.; Motin, V.L.; Khlebnikov, V.S.; Vasilenko, R.N.; Sakulin, V.K.; Machulin, A.V.; Uversky, V.N.; Karlyshev, A.V. Binding of LcrV protein from Yersinia pestis to human T-cells induces apoptosis, which is completely blocked by specific antibodies. Int. J. Biol. Macromol. 2019, 122, 1062–1070.
  35. Ovchinnikov, S.V.; Bikmetov, D.; Livenskyi, A.; Serebryakova, M.; Wilcox, B.; Mangano, K.; Shiriaev, D.I.; Osterman, I.A.; Sergiev, P.V.; Borukhov, S.; et al. Mechanism of translation inhibition by type II GNAT toxin AtaT2. Nucleic Acids Res. 2020, 48, 8617–8625.
  36. Carboni, G.; Marova, I.; Zara, G.; Zara, S.; Budroni, M.; Mannazzu, I. Evaluation of recombinant Kpkt cytotoxicity on HaCaT cells: Further steps towards the biotechnological exploitation yeast killer toxins. Foods 2021, 10, 556.
  37. Gandomkari, M.S.; Ayat, H.; Ahadi, A.M. Recombinantly expressed MeICT, a new toxin from Mesobuthuseupeus scorpion, inhibits glioma cell proliferation and downregulates Annexin A2 and FOXM1 genes. Biotechnol. Lett. 2022, 44, 703–712.
  38. Kuzmenkov, A.I.; Nekrasova, O.V.; Peigneur, S.; Tabakmakher, V.M.; Gigolaev, A.M.; Fradkov, A.F.; Kudryashova, K.S.; Chugunov, A.O.; Efremov, A.G.; Tytgat, J.; et al. KV1. 2 channel-specific blocker from Mesobuthuseupeus scorpion venom: Structural basis of selectivity. Neuropharmacology 2018, 143, 228–238.
  39. Gigolaev, A.M.; Kuzmenkov, A.I.; Peigneur, S.; Tabakmakher, V.M.; Pinheiro-Junior, E.L.; Chugunov, A.O.; Efremov, R.G.; Tytgat, J.; Vassilevski, A.A. Tuning scorpion toxin selectivity: Switching from KV1.1 to KV1.3. Front. Pharmacol. 2020, 11, 1010.
  40. Korolkova, Y.; Maleeva, E.; Mikov, A.; Lobas, A.; Solovyeva, E.; Gorshkov, M.; Andreev, Y.; Peigneur, S.; Tytgat, J.; Kornilov, F.; et al. New insectotoxin from Tibellus oblongus spider venom presents novel adaptation of ICK fold. Toxins 2021, 13, 29.
  41. Terpinskaya, T.I.; Osipov, A.V.; Kryukova, E.V.; Kudryavtsev, D.S.; Kopylova, N.V.; Yanchanka, T.L.; Palukoshka, A.F.; Gondarenko, E.A.; Zhmak, M.N.; Tsetlin, V.I.; et al. α -Conotoxins and α-Cobratoxin promote, while lipoxygenase and cyclooxygenase inhibitors suppress the proliferation of glioma C6 cells. Mar. Drugs 2021, 19, 118.
  42. Makarova, Y.V.; Kryukova, E.V.; Shelukhina, I.V.; Lebedev, D.S.; Andreeva, T.V.; Ryazantsev, D.Y.; Balandin, S.V.; Ovchinnikova, T.V.; Tsetlin, V.I.; Utkin, Y.N. The first recombinant viper three-finger toxins: Inhibition of muscle and neuronal nicotinic acetylcholine receptors. Dokl. Biochem. Biophys. 2018, 479, 127–130.
  43. Son, L.; Kryukova, E.; Ziganshin, R.; Andreeva, T.; Kudryavtsev, D.; Kasheverov, I.; Tsetlin, V.; Utkin, Y. Novel three-finger neurotoxins from Naja melanoleuca cobra venom interact with GABAA and nicotinic acetylcholine receptors. Toxins 2021, 13, 164.
  44. Kvetkina, A.; Malyarenko, O.; Pavlenko, A.; Dyshlovoy, S.; von Amsberg, G.; Ermakova, S.; Leychenko, E. Sea anemone Heteractis crispa actinoporin demonstrates in vitro anticancer activities and prevents HT-29 colorectal cancer cell migration. Molecules 2020, 25, 5979.
  45. Godakova, S.A.; Noskov, A.N.; Vinogradova, I.D.; Ugriumova, G.A.; Solovyev, A.I.; Esmagambetov, I.B.; Tukhvatulin, A.I.; Logunov, D.Y.; Naroditsky, B.S.; Shcheblyakov, D.V.; et al. Camelid VHHs fused to human Fc fragments provide long term protection against botulinum neurotoxin a in mice. Toxins 2019, 11, 464.
  46. Rodrigues, R.R.; Ferreira, M.R.A.; Donassolo, R.A.; Alves, M.L.F.; Motta, J.F.; Moreira, C., Jr.; Salvarani, F.M.; Moreira, A.N.; Conceição, F.R. Evaluation of the expression and immunogenicity of four versions of recombinant Clostridium perfringens beta toxin designed by bioinformatics tools. Anaerobe 2021, 69, 102326.
  47. Ferreira, D.V.; dos Santos, F.D.; da Cunha, C.E.P.; Moreira, C., Jr.; Donassolo, R.A.; Magalhães, C.G.; Belo Reis, A.S.; Oliveira, C.M.C.; Barbosa, J.D.; Leite, F.P.L.; et al. Immunogenicity of Clostridium perfringens epsilon toxin recombinant bacterin in rabbit and ruminants. Vaccine 2018, 36, 7589–7592.
  48. Karpov, D.S.; Goncharenko, A.V.; Usachev, E.V.; Vasina, D.V.; Divisenko, E.V.; Chalenko, Y.M.; Pochtovyi, A.A.; Ovchinnikov, R.S.; Makarov, V.V.; Yudin, S.M.; et al. A Strategy for the Rapid Development of a Safe Vibrio cholerae Candidate Vaccine Strain. Int. J. Mol. Sci. 2021, 22, 11657.
  49. Alomran, N.; Blundell, P.; Alsolaiss, J.; Crittenden, E.; Ainsworth, S.; Dawson, C.A.; Edge, R.J.; Hall, S.R.; Harrison, R.A.; Wilkinson, M.C.; et al. Exploring the utility of recombinant snake venom serine protease toxins as immunogens for generating experimental snakebite antivenoms. Toxins 2022, 14, 443.
  50. Alomran, N.; Chinnappan, R.; Alsolaiss, J.; Casewell, N.R.; Zourob, M. Exploring the utility of ssDNA aptamers directed against snake venom toxins as new therapeutics for snakebite envenoming. Toxins 2022, 14, 469.
  51. Neuschäfer-Rube, F.; Pathe-Neuschäfer-Rube, A.; Püschel, G.P. Discrimination of the activity of low-affinity wild-type and high-affinity mutant recombinant BoNT/B by a SIMA cell-based reporter release assay. Toxins 2022, 14, 65.
  52. Martin, T.; Möglich, A.; Felix, I.; Förtsch, C.; Rittlinger, A.; Palmer, A.; Denk, S.; Schneider, J.; Notbohm, L.; Vogel, M.; et al. Rho-inhibiting C2IN-C3 fusion toxin inhibits chemotactic recruitment of human monocytes ex vivo and in mice in vivo. Arch. Toxicol. 2018, 92, 323–336.
  53. Hashemi Yeganeh, H.; Heiat, M.; Kieliszek, M.; Alavian, S.M.; Rezaie, E. DT389-YP7, a recombinant immunotoxin against glypican-3 that inhibits hepatocellular cancer cells: An in vitro study. Toxins 2021, 13, 749.
  54. Cheung, L.S.; Fu, J.; Kumar, P.; Kumar, A.; Urbanowski, M.E.; Ihms, E.A.; Parveen, S.; Bullen, C.K.; Patrick, G.J.; Harrison, R.; et al. Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti–PD-1 in melanoma. Proc. Natl. Acad. Sci. USA 2019, 116, 3100–3105.
  55. Schmohl, J.U.; Todhunter, D.; Taras, E.; Bachanova, V.; Vallera, D.A. Development of a deimmunized bispecific immunotoxin dDT2219 against B-cell malignancies. Toxins 2018, 10, 32.
  56. Ryabchevskaya, E.M.; Evtushenko, A.; Granovskiy, D.L.; Ivanov, P.A.; Atabekov, J.G.; Kondakova, O.A.; Nikitin, N.A.; Karpova, O.V. Two approaches for the stabilization of Bacillus anthracis recombinant protective antigen. Hum. Vaccines Immunother. 2021, 17, 560–565.
  57. Ryabchevskaya, E.M.; Granovskiy, D.L.; Evtushenko, E.A.; Ivanov, P.A.; Kondakova, O.A.; Nikitin, N.A.; Karpova, O.V. Designing stable Bacillus anthracis antigens with a view to recombinant anthrax vaccine development. Pharmaceutics 2022, 14, 806.
  58. Evtushenko, E.A.; Kondakova, O.A.; Arkhipenko, M.V.; Kravchenko, T.B.; Bakhteeva, I.V.; Timofeev, V.S.; Nikitin, N.A.; Karpova, O.V. New formulation of a recombinant anthrax vaccine stabilised with structurally modified plant viruses. Front. Microbiol. 2022, 13, 1003969.
  59. Shulcheva, I.; Shchannikova, M.; Melnik, B.; Fursova, K.; Semushina, S.; Zamyatina, A.; Oleinikov, V.; Brovko, F. The zinc ions stabilize the three-dimensional structure and are required for the binding of staphylococcal enterotoxin-like protein P (SEIP) with MHC-II receptors. Protein Expr. Purif. 2022, 197, 106098.
  60. Gholami, N.; Cohan, R.A.; Razavi, A.; Bigdeli, R.; Dashbolaghi, A.; Asgary, V. Cytotoxic and apoptotic properties of a novel nano-toxin formulation based on biologically synthesized silver nanoparticle loaded with recombinant truncated Pseudomonas exotoxin A. J. Cell. Physiol. 2020, 235, 3711–3720.
  61. Royal, J.M.; Reeves, M.A.; Matoba, N. Repeated oral administration of a KDEL-tagged recombinant cholera toxin B subunit effectively mitigates dss colitis despite a robust immunogenic response. Toxins 2019, 11, 678.
  62. Nekrasova, O.V.; Primak, A.L.; Ignatova, A.A.; Novoseletsky, V.N.; Geras’kina, O.V.; Kudryashova, K.S.; Yakimov, S.A.; Kirpichnikov, M.P.; Arseniev, A.S.; Feofanov, A.V. N-terminal tagging with GFP enhances selectivity of agitoxin 2 to Kv1.3-channel binding site. Toxins 2020, 12, 802.
  63. Calabria, P.A.; Shimokawa-Falcão, L.H.A.; Colombini, M.; Moura-da-Silva, A.M.; Barbaro, K.C.; Faquim-Mauro, E.L.; Magalhaes, G.S. Design and production of a recombinant hybrid toxin to raise protective antibodies against Loxosceles spider venom. Toxins 2019, 11, 108.
  64. Logashina, Y.A.; Lubova, K.I.; Maleeva, E.E.; Palikov, V.A.; Palikova, Y.A.; Dyachenko, I.A.; Andreev, Y.A. Analysis of structural determinants of peptide MS 9a-1 essential for potentiating of TRPA1 channel. Mar. Drugs 2022, 20, 465.
  65. Mannazzu, I.; Domizio, P.; Carboni, G.; Zara, S.; Zara, G.; Comitini, F.; Budroni, M.; Ciani, M. Yeast killer toxins: From ecological significance to application. Crit. Rev. Biotechnol. 2019, 39, 603–617.
  66. Giovati, L.; Ciociola, T.; De Simone, T.; Conti, S.; Magliani, W. Wickerhamomyces yeast killer toxins’ medical applications. Toxins 2021, 13, 655.
  67. Leychenko, E.; Isaeva, M.; Tkacheva, E.; Zelepuga, E.; Kvetkina, A.; Guzev, K.; Monastyrnaya, M.; Kozlovskaya, E. Multigene family of pore-forming toxins from sea anemone Heteractis crispa. Mar. Drugs 2018, 16, 183.
  68. Ma, J.; Zhang, J.; Yan, R. Recombinant mammalian prions: The “correctly” misfolded prion protein conformers. Viruses 2022, 14, 1940.
  69. Imamura, M.; Tabeta, N.; Iwamaru, Y.; Takatsuki, H.; Mori, T.; Atarashi, R. Spontaneous generation of distinct prion variants with recombinant prion protein from a baculovirus-insect cell expression system. Biochem. Biophys. Res. Commun. 2022, 613, 67–72.
  70. Abskharon, R.; Wang, F.; Wohlkonig, A.; Ruan, J.; Soror, S.; Giachin, G.; Pardon, E.; Zou, W.; Legname, G.; Ma, J.; et al. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog. 2019, 15, e1008139.
  71. Abdelaziz, D.H.; Thapa, S.; Brandon, J.; Maybee, J.; Vankuppeveld, L.; McCorkell, R.; Schätzl, H.M. Recombinant prion protein vaccination of transgenic elk PrP mice and reindeer overcomes self-tolerance and protects mice against chronic wasting disease. J. Biol. Chem. 2018, 293, 19812–19822.
  72. Hwang, S.; Tatum, T.; Lebepe-Mazur, S.; Nicholson, E.M. Preparation of lyophilized recombinant prion protein for TSE diagnosis by RT-QuIC. BMC Res. Notes 2018, 11, 895.
  73. Kovachev, P.S.; Gomes, M.P.; Cordeiro, Y.; Ferreira, N.C.; Valadão, L.P.F.; Ascari, L.M.; Rangel, L.P.; Silva, J.L.; Sanyal, S. RNA modulates aggregation of the recombinant mammalian prion protein by direct interaction. Sci. Rep. 2019, 9, 12406.
  74. Benilova, I.; Reilly, M.; Terry, C.; Wenborn, A.; Schmidt, C.; Marinho, A.T.; Risse, E.; Al-Doujaily, H.; WigginsDeOliveira, M.; Sandberg, M.K.; et al. Highly infectious prions are not directly neurotoxic. Proc. Natl. Acad. Sci. USA 2020, 117, 23815.
  75. Fernández-Borges, N.; Di Bari, M.A.; Eraña, H.; Sánchez-Martín, M.; Pirisinu, L.; Parra, B.; Elezgarai, S.R.; Vanni, I.; López-Moreno, R.; Vaccari, G.; et al. Cofactors influence the biological properties of infectious recombinant prions. Acta. Neuropathol. 2018, 135, 179–199.
  76. Jack, K.; Jackson, G.S.; Bieschke, J. Essential components of synthetic infectious prion formation de novo. Biomolecules 2022, 12, 1694.
  77. Hassan, M.A.; Abol-Fotouh, D.; Omer, A.M.; Tamer, T.M.; Abbas, E. Comprehensive insights into microbial keratinases and their implication in various biotechnological and industrial sectors: A review. Int. J. Biol. Macromol. 2020, 154, 567–583.
More
Information
Subjects: Toxicology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 683
Revisions: 4 times (View History)
Update Date: 10 Mar 2023
1000/1000
ScholarVision Creations