1000/1000
Hot
Most Recent
There is no comment~
More
A Bloch wave (also called Bloch state or Bloch function or Bloch wavefunction), named after Swiss physicist Felix Bloch, is a kind of wave function which can be written as a plane wave modulated by a periodic function. By definition, if a wave is a Bloch wave, its wavefunction can be written in the form: where
The most common example of Bloch's theorem is describing electrons in a crystal. However, a Bloch-wave description applies more generally to any wave-like phenomenon in a periodic medium. For example, a periodic dielectric structure in electromagnetism leads to photonic crystals, and a periodic acoustic medium leads to phononic crystals. It is generally treated in the various forms of the dynamical theory of diffraction.
Suppose an electron is in a Bloch state
where u is periodic with the same periodicity as the crystal lattice. The actual quantum state of the electron is entirely determined by
The first Brillouin zone is a restricted set of values of k with the property that no two of them are equivalent, yet every possible k is equivalent to one (and only one) vector in the first Brillouin zone. Therefore, if we restrict k to the first Brillouin zone, then every Bloch state has a unique k. Therefore, the first Brillouin zone is often used to depict all of the Bloch states without redundancy, for example in a band structure, and it is used for the same reason in many calculations.
When k is multiplied by the reduced Planck's constant, it equals the electron's crystal momentum. Related to this, the group velocity of an electron can be calculated based on how the energy of a Bloch state varies with k; for more details see crystal momentum.
For a detailed example in which the consequences of Bloch's theorem are worked out in a specific situation, see the article: Particle in a one-dimensional lattice (periodic potential).
Next, we prove Bloch's theorem:
The defining property of a crystal is translational symmetry, which means that if the crystal is shifted an appropriate amount, it winds up with all its atoms in the same places. (A finite-size crystal cannot have perfect translational symmetry, but it is a useful approximation.)
A three-dimensional crystal has three primitive lattice vectors a1, a2, a3. If the crystal is shifted by any of these three vectors, or a combination of them of the form
where ni are three integers, then the atoms end up in the same set of locations as they started.
Another helpful ingredient in the proof is the reciprocal lattice vectors. These are three vectors b1, b2, b3 (with units of inverse length), with the property that ai · bi = 2π, but ai · bj = 0 when i ≠ j. (For the formula for bi, see reciprocal lattice vector.)
Let
Proof: Assume that we have a wavefunction
for j = 1, 2, 3, where Cj are three numbers (the eigenvalues) which do not depend on r. It is helpful to write the numbers Cj in a different form, by choosing three numbers θ1, θ2, θ3 with e2πiθj = Cj:
Again, the θj are three numbers which do not depend on r. Define k = θ1b1 + θ2b2 + θ3b3, where bj are the reciprocal lattice vectors (see above). Finally, define
Then
This proves that u has the periodicity of the lattice. Since
Finally, we are ready for the main proof of Bloch's theorem which is as follows.
As above, let
The concept of the Bloch state was developed by Felix Bloch in 1928,[1] to describe the conduction of electrons in crystalline solids. The same underlying mathematics, however, was also discovered independently several times: by George William Hill (1877),[2] Gaston Floquet (1883),[3] and Alexander Lyapunov (1892).[4] As a result, a variety of nomenclatures are common: applied to ordinary differential equations, it is called Floquet theory (or occasionally the Lyapunov–Floquet theorem). The general form of a one-dimensional periodic potential equation is Hill's equation:[5]
where f(t) is a periodic potential. Specific periodic one-dimensional equations include the Kronig–Penney model and Mathieu's equation.
Mathematically Bloch's theorem is interpreted in terms of unitary characters of a lattice group, and is applied to spectral geometry.[6][7][8]