Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1319 word(s) 1319 2021-11-01 09:09:48 |
2 update references and layout -83 word(s) 1236 2021-11-02 03:39:58 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Ogabi, R. Fire Safety Performance of Polymer Composites. Encyclopedia. Available online: https://encyclopedia.pub/entry/15606 (accessed on 06 December 2024).
Ogabi R. Fire Safety Performance of Polymer Composites. Encyclopedia. Available at: https://encyclopedia.pub/entry/15606. Accessed December 06, 2024.
Ogabi, Raphael. "Fire Safety Performance of Polymer Composites" Encyclopedia, https://encyclopedia.pub/entry/15606 (accessed December 06, 2024).
Ogabi, R. (2021, November 02). Fire Safety Performance of Polymer Composites. In Encyclopedia. https://encyclopedia.pub/entry/15606
Ogabi, Raphael. "Fire Safety Performance of Polymer Composites." Encyclopedia. Web. 02 November, 2021.
Fire Safety Performance of Polymer Composites
Edit

The growth of the use of polymer composite materials has been a phenomenon since 1960, with diverse applications in spacecraft, aircraft, boats, ship, automobiles, civil infrastructure, sporting goods, and consumer products. In addition, the use of composites will continue to grow in the coming years with emerging end-use such as large bridge structures, engine machinery, offshore platforms, computer hardware, and biomedicals devices. However, a critical challenge facing the growing use of polymer composites is their high combustibility.

composites next generation burner (NexGen) Thermogravimetric analysis (TGA) Cone calorimeter

1. Introduction

Over the years, researchers have made several attempts to come up with solutions to the problems associated with the use of polymer composite materials. The most successful attempt reported in the literature is the strategy of incorporating a novel chemical substance known as a fire retardant into the polymer matrix to suppress fire (heat release and temperature) and minimise the gas emission species that could be a source of toxicity via the mechanism of the solid phase and gaseous phase phenomena [1][2][3][4].

Regardless of the scale used, it is vital to ensure that the fire reaction tests are carried out in conditions that precisely reproduce the type of fire in which the composite materials will be subjected.

2. Fire Safety Performance and Smoke (Toxic Gas) Emission of Composites

At high temperatures, the residue does not emit any dangerous gas and acts as an effective insulation layer on the sample’s surface, protecting the underlying material from fire.

Researchers have performed quite a number of studies on the fire behaviour and the protection of polymer composite materials used especially as vital components in the transport sectors and building element under fire condition [5]. The bench-scale platform of the medium scale has provided significant fire testing parameters that indicate the fire reaction and fire resistance of the materials assessed (as shown in Table 1 , Table 2 , Table 3 and Table 4 ) e.g., a cone calorimeter test (CCT), limiting oxygen index (LOI), and underwriter’s laboratories (UL-94). Thus, the results have been a useful guide in the evaluation of the fire hazard risk and the smoke and toxic gases examination.

Table 1. The experimental working scales adopted to investigate the flammability and combustibility of composites [6].
Specimens (Codes) pHRR (kW/m2) THR (MJ/m2) TTI (s) pHHR/tig (kWm2s1) Residual Mass (%) TSP (m2/kg) TSR (m2/m2) SEA (m2/kg) CO Yield (g/kg) CO2 Yield (kg/kg) LOI UL-94 Citations
A-10 361 67 31 16.2 - 20.9 - 762 0.128 - 25.4 HB  
B-10 429 60 54 8.1 - 20.4 - 838 0.199 - 25.0 HB  
AS-5 348 63 58 6.0 - 21.8 - 918 0.333 - 26.4 HB  
BS-5 335 59 60 5.6 - 19.1 - 756 0.053 - 27.7 HB [7]
BS-0 433 66 60 8.2 - 17.7 - 505 0.074 - 28.0 HB  
B1S-5 306 55 60 5.1 - 18.9 - 728 0.268 - 28.8 HB  
B1S-10 416 63 59 5.8 - 16.7 - 614 0.279 - 29.0 HB  
Pure PLA 752 171.1 37 209 −3.66 40.8 - - 0.037 - 21.5 NR  
MX0.5 920 170.4 32 209 −0.30 47.5 - - 0.030 - 20.0 NR  
MX1.0 803 167.7 32 207 0.00 41.0 - - 0.028 - 20.0 NR  
MX2.0 715 178.9 35 254 0.53 20.8 - - 0.035 - 20.5 NR [8]
F12.0 431 136.3 41 246 4.04 457.4 - - 0.097 - 30.0 V-1  
F11.5MX0.5 263 144.5 39 389 5.86 178.1 - - 0.062 - 33.0 V-0  
F11.0MX1.0 266 142.7 35 415 7.82 244.3 - - 0.059 - 34.5 V-1  
F10.0MX2.0 410 149.6 30 252 6.36 282.0 - - 0.072   28.0 V-1  
Pure WPC 347 191 26 - 16.4 - - - - - - -  
WPC + 3wt% FR 323 179 23 - 22.9 - - - - - - - [9]
WPC +10wt% FR 311 175 22 - 25.2 - - - - - - -  

Calorimeter (irradiance, 50 kW/m2), LOI and UL-94 results. TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Table 2. Cone calorimeter (irradiance, 50 kW/m2), LOI, and UL-94 results.
Specimens (Codes) pHRR (kW/m2) THR (MJ/m2) TTI (s) pHRR/tig (s) Residual Mass (%) TSP (m2/kg) TSR (m2/m2) SEA (m2/kg) CO Yield (g/kg) CO2 Yield (kg/kg) LOI UL-94 Citations
AcF20 (2 mm) 285.7 19.6 30 - 35.5 - - - 0.04 1.68 - -  
AcF40 (4 mm) 280.4 39.9 49 - 28.2 - - - 0.10 1.50 - -  
AcF3 (3 plies) 161.3 4.5 9 - 26.1 - - - 0.51 1.29 - -  
AcF5 (5 plies) 162.0 13.2 17 - 35.0 - - - 0.36 1.49 - - [10]
AcF7 (7 plies) 144.0 15.5 24 - 39.0 - - - 0.65 1.16 - -  
AcF8 (8 plies) 169.4 11.1 27 - 28.9 - - - 0.21 1.19 - -  
AcF9 (9 plies) 175.3 15.9 31 - 17.2 - - - 0.47 1.63 - -  
Cotton 100 10.0 22 73 0.0 2.2 - -   - - -  
Cotton4/alginat1 89 9.40 28 86 2.7 0.2 - -   - - -  
Cotton5/alginat5 68 7.20 42 87 8.4 0.2 - -   - - - [11]
Cotton1/alginat4 46 9.70 71 97 10.4 1.9 - -   - - -  
Alginate 49 3.50 103 123 23.9 0.9 - -   - - -  
PP 1620 110 24 - - - 980 - 36.6 3.16 - -  
PP/MWNT 931 102 17 - - - 1310 - 44.2 2.89 - -  
PB 1420 111 35 - - - 1090 - 36.4 3.01 - - [12]
PB/MWNT 830 108 18 - - - 1545 - 40.5 2.90 - -  
PE 1700 125 39 - - - 1075 - 30.3 3.36 - -  
PE/MWNT 920 111 37 - - - 1315 - 35.1 3.14 - -  

TSP: total smoke production, TSR: total smoke release, SEA: specific extinction area.

Table 3. Cone calorimeter (irradiance, 35 kW/m2), LOI, and UL-94 results.
Specimens (Codes) pHRR (kW/m2) THR (MJ/m2) TTI (s) pHRR/tig (s) Residual Mass (%) TSP (m2/k) TSR (m2/m2) SEA (m2/k) CO Yield (kg/kg) CO2 Yield (kg/kg) LOI UL94 Citations
GRPBT 417 53.6 49 - 35.5 354 - 520 0.052 1.64 - -  
GRPBT/AHP 121 40.5 30 - 28.2 222 - 388 0.144 1.15 - - [1]
GRPBT/LHP 105 43.7 36 - 26.1 320 - 475 0.128 1.52 - -  
GRPBT/CHP 101 42.8 38 - 35.0 198 - 249 0.122 1.42 - -  
PPO 467 110 97 - 26 - 1303 - 0.14 - 29 V-0  
PPO-30AlPi 130 102 125 - 52 - 1994 - 0.18 - 43 V-0  
TPU 613 111 84 - 6 - 1229 - 0.04 - 24 HB  
TPU-30AlPi 447 108 70 - 13 - 3029 - 0.16 - 24 V-0 [13]
PP 480 125 66 - 2 - 1305 - 0.04 - 17 HB  
PP-30AlPi 524 111 73 - 10 - 2310 - 0.16 - 27 HB  
EP 1063 76.1 59 130 11.9 71.4 - - - - 26.2 NR  
EP/10APP 754 42.8 63 105 45.7 30.6 - - - - 30.2 NR [14]
EP/7.5APP/2.5BPOPA 576 42.6 61 100 47.2 25.9 - - - - 33.1 V-0  
EP 1063 114 76 - 3 - 3626 829 - -   HB  
20HS 729 106 63 - 3 - 2768 636 - -   HB  
20LHP 166 37 59 - 50 - 1016 459 - -   HB [15]
15HS/5LHP 577 80 57 - 13 - 2441 624 - -   HB  
5HS/15LHP 169 35 59 - 54 - 899 435 - -   HB  

TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Table 4. CCT (irradiance, 50kW/m2), LOI, and UL-94 results.
Samples pHRR (kW/m2) THR (MJ/m2) TTI (s) pHRR/tig (s) Residual Mass (%) TSP (m2/kg) TSR (m2/m2) SEA (m2/kg) CO Yield (g/kg) CO2 Yield (kg/g) LOI UL-94 Citations
GF30-PBT 345 118 30 105 35.5 - 3987 - - - 20.0 NR  
GF30-PBT10 136 82 49 65 28.2 - 3958 - - - 23.2 NR  
GF30-PBT15 113 74 9 60 26.1 - 3548 - - - 27.0 V-0 [16]
GF30-PBT20 107 75 17 60 35.0 - 2747 - - - 28.5 V-0  
GF30-PBT25 105 71 24 60 39.0 - 2101 - - - 32.5 V-0  
Neat Furan 682 30.9 98 - 44.0 - 117 - 0.0203 1.37 - -  
F/AS-40 amino 554 24.4 103 - 50.5 - 109 - 0.0249 1.42 - -  
F/AS-40 isocy 556 30.7 104 - 50.9 - 108 - 0.0277 1.41 - - [17]
F/PT-40AS isocy 507 23.8 100 - 49.7 - 96 - 0.0241 1.30 - -  
F/PT-40AS amino 569 26.9 95 - 50.2 - 92 - 0.0239 1.31 - -

TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Furthermore, the remarkable decreased smoke and toxic gas release revealed by the alternating composite in the cause of the combustion process is extremely important to reduce the harm to people in case of fires.

In order to improve the fire behaviour of the polyester resin, different phosphate fire retardants, ammonium polyphosphate (APP), silane-coated ammonium polyphosphate (S-APP), and melamine pyrophosphate (MPP) were dispersed within the resin.

3. Conclusions

This review has successfully explored the application of the various classes of the thermal and combustion state-of-the-art facilities deployed for the evaluation of the flammability and thermal stability of polymer composites.

Summarily, the small-scale facilities (such as TGA, MCC, etc.) provide detailed understanding and mastery of the thermal reaction properties of the composites. While with the medium scale, extended fire reaction parameters, which are the key indicators of the fire safety performance such as the pHRR, THR, TTI, TSP, CO/CO 2, etc. can be determined.

Furthermore, novel polymer composite materials, particularly from bio-sources (because of their environmental friendliness, economic concerns, and acceptable fire safety performance) could be designed and tested as a potential substitute for synthetic composites in the transportation sector.

In finality, this paper seeks to provide a new perspective that will encourage more research efforts in this scientific domain, especially at the large scale.

References

  1. Yang, W.; Tang, G.; Song, L.; Hu, Y.; Yuen, R.K. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites. Thermochim. Acta 2011, 526, 185–191.
  2. Chen, X.; Feng, X.; Jiao, C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J. Therm. Anal. Calorim. 2017, 129, 851–857.
  3. Yang, H.; Song, L.; Tai, Q.; Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, K.K.R. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 2014, 105, 248–256.
  4. Barrow, C.S.; Lucia, H.; Stock, M.F.; Alarie, Y. Development of methodologies to assess the relative hazards from thermal decomposition products of polymeric materials. Am. Ind. Hyg. Assoc. J. 1979, 40, 408–423.
  5. Liu, J.; Guo, Y.; Zhang, Y.; Liu, H.; Peng, S.; Pan, B.; Ma, J.; Niu, Q. Thermal conduction and fire property of glass fiber-reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym. Degrad. Stab. 2016, 129, 180–191.
  6. Hörold, A.; Schartel, B.; Trappe, V.; Korzen, M.; Bünker, J. Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants. Compos. Struct. 2017, 160, 1310–1318.
  7. Timme, S.; Trappe, V.; Korzen, M.; Schartel, B. Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale. Compos. Struct. 2017, 178, 320–329.
  8. Ngan, A.; Jia, C.Q.; Tong, S.-T. Production, Characterization and Alternative Applications of Biochar; Springer: Singapore, 2019.
  9. Nartey, O.D.; Zhao, B. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv. Mater. Sci. Eng. 2014, 2014, 1–12.
  10. Fateh, T.; Kahanji, C.; Joseph, P.; Rogaume, T. A study of the effect of thickness on the thermal degradation and flammability characteristics of some composite materials using a cone calorimeter. J. Fire Sci. 2017, 35, 547–564.
  11. Wang, B.; Li, P.; Xu, Y.-J.; Jiang, Z.-M.; Dong, C.-H.; Liu, Y.; Zhu, P. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: Thermal degradation properties, flammability and flame-retardant mechanism. Compos. Part B Eng. 2020, 194, 108038.
  12. Fina, A.; Bocchini, S.; Camino, G. Catalytic fire retardant nanocomposites. Polym. Degrad. Stab. 2008, 93, 1647–1655.
  13. Zhao, B.; Liang, W.-J.; Wang, J.-S.; Li, F.; Liu, Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016, 133, 162–173.
  14. Xing, W.; Song, L.; Wang, X.; Lv, X.; Hu, Y. Preparation, combustion, and thermal behavior of UV-cured epoxy-based coatings containing layered double hydroxide. Polym. Adv. Technol. 2011, 22, 1859–1864.
  15. Monti, M.; Hoydonckx, H.; Stappers, F.; Camino, G. Thermal and combustion behavior of furan resin/silica nanocomposites. Eur. Polym. J. 2015, 67, 561–569.
  16. Chen, X.; Huo, L.; Jiao, C.; Li, S. Journal of analytical and applied pyrolysis TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J. Anal. Appl. Pyrolysis 2013, 100, 186–191.
  17. Ding, Y.; Swann, J.D.; Sun, Q.; Stoliarov, S.I.; Kraemer, R.H. Development of a pyrolysis model for glass fiber reinforced polyamide 66 blended with red phosphorus: Relationship between flammability behavior and material composition. Compos. Part B Eng. 2019, 176, 107263.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 670
Entry Collection: Environmental Sciences
Revisions: 2 times (View History)
Update Date: 02 Nov 2021
1000/1000
ScholarVision Creations