Fire Safety Performance of Polymer Composites: Comparison
Please note this is a comparison between Version 2 by Amina Yu and Version 1 by Raphael Oluwatoyin Ogabi.

The growth of the use of polymer composite materials has been a phenomenon since 1960, with diverse applications in spacecraft, aircraft, boats, ship, automobiles, civil infrastructure, sporting goods, and consumer products. In addition, the use of composites will continue to grow in the coming years with emerging end-use such as large bridge structures, engine machinery, offshore platforms, computer hardware, and biomedicals devices. However, a critical challenge facing the growing use of polymer composites is their high combustibility.

  • composites
  • thermal decomposition
  • next generation burner (NexGen)
  • Aircraft
  • Thermogravimetric analysis (TGA)
  • Cone calorimeter

1. Introduction

Over the years, researchers have made several attempts to come up with solutions to the problems associated with the use of polymer composite materials. The most successful attempt reported in the literature is the strategy of incorporating a novel chemical substance known as a fire retardant into the polymer matrix to suppress fire (heat release and temperature) and minimise the gas emission species that could be a source of toxicity via the mechanism of the solid phase and gaseous phase phenomena [4,8,9,10][1][2][3][4].

The aim of this review is to carry out an extensive study on the various classes of thermal/fire facilities used for the characterisation of polymer composite materials and to examine different test parameters with respect to their gaseous emission properties. This will be achieved via the following specific objectives: Collection of data from top five publishers; Classification of thermal and fire testing facilities; Evaluation of various thermal/fire parameters of polymer composites; Gas emission assessment of some composite materials.

 Regardless of the scale used, it is vital to ensure that the fire reaction tests are carried out in conditions that precisely reproduce the type of fire in which the composite materials will be subjected.

2. Fire Safety Performance and Smoke (Toxic Gas) Emission of Composites

At high temperatures, the residue does not emit any dangerous gas and acts as an effective insulation layer on the sample’s surface, protecting the underlying material from fire.

Researchers have performed quite a number of studies on the fire behaviour and the protection of polymer composite materials used especially as vital components in the transport sectors and building element under fire condition [109][5]. The bench-scale platform of the medium scale has provided significant fire testing parameters that indicate the fire reaction and fire resistance of the materials assessed (as shown in Table 31 , Table 42 , Table 53 and Table 64 ) e.g., a cone calorimeter test (CCT), limiting oxygen index (LOI), and underwriter’s laboratories (UL-94). Thus, the results have been a useful guide in the evaluation of the fire hazard risk and the smoke and toxic gases examination.

Table 31. The experimental working scales adopted to investigate the flammability and combustibility of composites [25][6].
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHHR/tig (kWm2s1)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/kg)LOIUL-94Citations
A-10361673116.2-20.9-7620.128-25.4HB 
B-1042960548.1-20.4-8380.199-25.0HB 
AS-534863586.0-21.8-9180.333-26.4HB 
BS-533559605.6-19.1-7560.053-27.7HB[7]
BS-043366608.2-17.7-5050.074-28.0HB 
B1S-530655605.1-18.9-7280.268-28.8HB 
B1S-1041663595.8-16.7-6140.279-29.0HB 
Pure PLA752171.137209−3.6640.8--0.037-21.5NR 
MX0.5920170.432209−0.3047.5--0.030-20.0NR 
MX1.0803167.7322070.0041.0--0.028-20.0NR 
MX2.0715178.9352540.5320.8--0.035-20.5NR[8]
F12.0431136.3412464.04457.4--0.097-30.0V-1 
F11.5MX0.5263144.5393895.86178.1--0.062-33.0V-0 
F11.0MX1.0266142.7354157.82244.3--0.059-34.5V-1 
F10.0MX2.0410149.6302526.36282.0--0.072 28.0V-1 
Pure WPC34719126-16.4------- 
WPC + 3wt% FR32317923-22.9-------[9]
WPC +10wt% FR31117522-25.2------- 
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHHR/tig (kWm2s1)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/kg)LOIUL-94Citations
A-10361673116.2-20.9-7620.128-25.4HB 
B-1042960548.1-20.4-8380.199-25.0HB 
AS-534863586.0-21.8-9180.333-26.4HB 
BS-533559605.6-19.1-7560.053-27.7HB[26]
BS-043366608.2-17.7-5050.074-28.0HB 
B1S-530655605.1-18.9-7280.268-28.8HB 
B1S-1041663595.8-16.7-6140.279-29.0HB 
Pure PLA752171.137209−3.6640.8--0.037-21.5NR 
MX0.5920170.432209−0.3047.5--0.030-20.0NR 
MX1.0803167.7322070.0041.0--0.028-20.0NR 
MX2.0715178.9352540.5320.8--0.035-20.5NR[27]
F12.0431136.3412464.04457.4--0.097-30.0V-1 
F11.5MX0.5263144.5393895.86178.1--0.062-33.0V-0 
F11.0MX1.0266142.7354157.82244.3--0.059-34.5V-1 
F10.0MX2.0410149.6302526.36282.0--0.072 28.0V-1 
Pure WPC34719126-16.4------- 
WPC + 3wt% FR32317923-22.9-------[28]
WPC +10wt% FR31117522-25.2------- 

Calorimeter (irradiance, 50 kW/m2), LOI and UL-94 results. TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Table 42. Cone calorimeter (irradiance, 50 kW/m2), LOI, and UL-94 results.
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/kg)LOIUL-94Citations
AcF20 (2 mm)285.719.630-35.5---0.041.68-- 
AcF40 (4 mm)280.439.949-28.2---0.101.50-- 
AcF3 (3 plies)161.34.59-26.1---0.511.29-- 
AcF5 (5 plies)162.013.217-35.0---0.361.49--[10]
AcF7 (7 plies)144.015.524-39.0---0.651.16-- 
AcF8 (8 plies)169.411.127-28.9---0.211.19-- 
AcF9 (9 plies)175.315.931-17.2---0.471.63-- 
Cotton10010.022730.02.2-- --- 
Cotton4/alginat1899.4028862.70.2-- --- 
Cotton5/alginat5687.2042878.40.2-- ---[11]
Cotton1/alginat4469.70719710.41.9-- --- 
Alginate493.5010312323.90.9-- --- 
PP162011024---980-36.63.16-- 
PP/MWNT93110217---1310-44.22.89-- 
PB142011135---1090-36.43.01--[12]
PB/MWNT83010818---1545-40.52.90-- 
PE170012539---1075-30.33.36-- 
PE/MWNT92011137---1315-35.13.14-- 
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/kg)LOIUL-94Citations
AcF20 (2 mm)285.719.630-35.5---0.041.68-- 
AcF40 (4 mm)280.439.949-28.2---0.101.50-- 
AcF3 (3 plies)161.34.59-26.1---0.511.29-- 
AcF5 (5 plies)162.013.217-35.0---0.361.49--[1]
AcF7 (7 plies)144.015.524-39.0---0.651.16-- 
AcF8 (8 plies)169.411.127-28.9---0.211.19-- 
AcF9 (9 plies)175.315.931-17.2---0.471.63-- 
Cotton10010.022730.02.2-- --- 
Cotton4/alginat1899.4028862.70.2-- --- 
Cotton5/alginat5687.2042878.40.2-- ---[18]
Cotton1/alginat4469.70719710.41.9-- --- 
Alginate493.5010312323.90.9-- --- 
PP162011024---980-36.63.16-- 
PP/MWNT93110217---1310-44.22.89-- 
PB142011135---1090-36.43.01--[3]
PB/MWNT83010818---1545-40.52.90-- 
PE170012539---1075-30.33.36-- 
PE/MWNT92011137---1315-35.13.14-- 

TSP: total smoke production, TSR: total smoke release, SEA: specific extinction area.

Table 53. Cone calorimeter (irradiance, 35 kW/m2), LOI, and UL-94 results.
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/k)TSR (m2/m2)SEA (m2/k)CO Yield (kg/kg)CO2 Yield (kg/kg)LOIUL94Citations
GRPBT41753.649-35.5354-5200.0521.64-- 
GRPBT/AHP12140.530-28.2222-3880.1441.15--[1]
GRPBT/LHP10543.736-26.1320-4750.1281.52-- 
GRPBT/CHP10142.838-35.0198-2490.1221.42-- 
PPO46711097-26-1303-0.14-29V-0 
PPO-30AlPi130102125-52-1994-0.18-43V-0 
TPU61311184-6-1229-0.04-24HB 
TPU-30AlPi44710870-13-3029-0.16-24V-0[13]
PP48012566-2-1305-0.04-17HB 
PP-30AlPi52411173-10-2310-0.16-27HB 
EP106376.15913011.971.4----26.2NR 
EP/10APP75442.86310545.730.6----30.2NR[14]
EP/7.5APP/2.5BPOPA57642.66110047.225.9----33.1V-0 
EP106311476-3-3626829-- HB 
20HS72910663-3-2768636-- HB 
20LHP1663759-50-1016459-- HB[15]
15HS/5LHP5778057-13-2441624-- HB 
5HS/15LHP1693559-54-899435-- HB 
Specimens (Codes)pHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/k)TSR (m2/m2)SEA (m2/k)CO Yield (kg/kg)CO2 Yield (kg/kg)LOIUL94Citations
GRPBT41753.649-35.5354-5200.0521.64-- 
GRPBT/AHP12140.530-28.2222-3880.1441.15--[4]
GRPBT/LHP10543.736-26.1320-4750.1281.52-- 
GRPBT/CHP10142.838-35.0198-2490.1221.42-- 
PPO46711097-26-1303-0.14-29V-0 
PPO-30AlPi130102125-52-1994-0.18-43V-0 
TPU61311184-6-1229-0.04-24HB 
TPU-30AlPi44710870-13-3029-0.16-24V-0[60]
PP48012566-2-1305-0.04-17HB 
PP-30AlPi52411173-10-2310-0.16-27HB 
EP106376.15913011.971.4----26.2NR 
EP/10APP75442.86310545.730.6----30.2NR[110]
EP/7.5APP/2.5BPOPA57642.66110047.225.9----33.1V-0 
EP106311476-3-3626829-- HB 
20HS72910663-3-2768636-- HB 
20LHP1663759-50-1016459-- HB[111]
15HS/5LHP5778057-13-2441624-- HB 
5HS/15LHP1693559-54-899435-- HB 

TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Table 64. CCT (irradiance, 50kW/m2), LOI, and UL-94 results.
SamplespHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/g)LOIUL-94Citations
GF30-PBT3451183010535.5-3987---20.0NR 
GF30-PBT1013682496528.2-3958---23.2NR 
GF30-PBT151137496026.1-3548---27.0V-0[16]
GF30-PBT2010775176035.0-2747---28.5V-0 
GF30-PBT2510571246039.0-2101---32.5V-0 
Neat Furan68230.998-44.0-117-0.02031.37-- 
F/AS-40 amino55424.4103-50.5-109-0.02491.42-- 
F/AS-40 isocy55630.7104-50.9-108-0.02771.41--[17]
F/PT-40AS isocy50723.8100-49.7-96-0.02411.30-- 
F/PT-40AS amino56926.995-50.2-92-0.02391.31--
SamplespHRR (kW/m2)THR (MJ/m2)TTI (s)pHRR/tig (s)Residual Mass (%)TSP (m2/kg)TSR (m2/m2)SEA (m2/kg)CO Yield (g/kg)CO2 Yield (kg/g)LOIUL-94Citations
GF30-PBT3451183010535.5-3987---20.0NR 
GF30-PBT1013682496528.2-3958---23.2NR 
GF30-PBT151137496026.1-3548---27.0V-0[59]
GF30-PBT2010775176035.0-2747---28.5V-0 
GF30-PBT2510571246039.0-2101---32.5V-0 
Neat Furan68230.998-44.0-117-0.02031.37-- 
F/AS-40 amino55424.4103-50.5-109-0.02491.42-- 
F/AS-40 isocy55630.7104-50.9-108-0.02771.41--[108]
F/PT-40AS isocy50723.8100-49.7-96-0.02411.30-- 
F/PT-40AS amino56926.995-50.2-92-0.02391.31--

TSP: total smoke production, TSR: total smoke release SEA: specific extinction area.

Furthermore, the remarkable decreased smoke and toxic gas release revealed by the alternating composite in the cause of the combustion process is extremely important to reduce the harm to people in case of fires.

In order to improve the fire behaviour of the polyester resin, different phosphate fire retardants, ammonium polyphosphate (APP), silane-coated ammonium polyphosphate (S-APP), and melamine pyrophosphate (MPP) were dispersed within the resin.

3. Conclusions

This review has successfully explored the application of the various classes of the thermal and combustion state-of-the-art facilities deployed for the evaluation of the flammability and thermal stability of polymer composites.

Summarily, the small-scale facilities (such as TGA, MCC, etc.) provide detailed understanding and mastery of the thermal reaction properties of the composites. While with the medium scale, extended fire reaction parameters, which are the key indicators of the fire safety performance such as the pHRR, THR, TTI, TSP, CO/CO 2, etc. can be determined.

Furthermore, novel polymer composite materials, particularly from bio-sources (because of their environmental friendliness, economic concerns, and acceptable fire safety performance) could be designed and tested as a potential substitute for synthetic composites in the transportation sector.

In finality, this paper seeks to provide a new perspective that will encourage more research efforts in this scientific domain, especially at the large scale.

References

  1. Yang, W.; Tang, G.; Song, L.; Hu, Y.; Yuen, R.K. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites. Thermochim. Acta 2011, 526, 185–191.
  2. Chen, X.; Feng, X.; Jiao, C. Combustion and thermal degradation properties of flame-retardant TPU based on EMIMPF6. J. Therm. Anal. Calorim. 2017, 129, 851–857.
  3. Yang, H.; Song, L.; Tai, Q.; Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, K.K.R. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites. Polym. Degrad. Stab. 2014, 105, 248–256.
  4. Barrow, C.S.; Lucia, H.; Stock, M.F.; Alarie, Y. Development of methodologies to assess the relative hazards from thermal decomposition products of polymeric materials. Am. Ind. Hyg. Assoc. J. 1979, 40, 408–423.
  5. Liu, J.; Guo, Y.; Zhang, Y.; Liu, H.; Peng, S.; Pan, B.; Ma, J.; Niu, Q. Thermal conduction and fire property of glass fiber-reinforced high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polym. Degrad. Stab. 2016, 129, 180–191.
  6. Hörold, A.; Schartel, B.; Trappe, V.; Korzen, M.; Bünker, J. Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants. Compos. Struct. 2017, 160, 1310–1318.
  7. Timme, S.; Trappe, V.; Korzen, M.; Schartel, B. Fire stability of carbon fiber reinforced polymer shells on the intermediate-scale. Compos. Struct. 2017, 178, 320–329.
  8. Ngan, A.; Jia, C.Q.; Tong, S.-T. Production, Characterization and Alternative Applications of Biochar; Springer: Singapore, 2019.
  9. Nartey, O.D.; Zhao, B. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv. Mater. Sci. Eng. 2014, 2014, 1–12.
  10. Fateh, T.; Kahanji, C.; Joseph, P.; Rogaume, T. A study of the effect of thickness on the thermal degradation and flammability characteristics of some composite materials using a cone calorimeter. J. Fire Sci. 2017, 35, 547–564.
  11. Wang, B.; Li, P.; Xu, Y.-J.; Jiang, Z.-M.; Dong, C.-H.; Liu, Y.; Zhu, P. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: Thermal degradation properties, flammability and flame-retardant mechanism. Compos. Part B Eng. 2020, 194, 108038.
  12. Fina, A.; Bocchini, S.; Camino, G. Catalytic fire retardant nanocomposites. Polym. Degrad. Stab. 2008, 93, 1647–1655.
  13. Zhao, B.; Liang, W.-J.; Wang, J.-S.; Li, F.; Liu, Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016, 133, 162–173.
  14. Xing, W.; Song, L.; Wang, X.; Lv, X.; Hu, Y. Preparation, combustion, and thermal behavior of UV-cured epoxy-based coatings containing layered double hydroxide. Polym. Adv. Technol. 2011, 22, 1859–1864.
  15. Monti, M.; Hoydonckx, H.; Stappers, F.; Camino, G. Thermal and combustion behavior of furan resin/silica nanocomposites. Eur. Polym. J. 2015, 67, 561–569.
  16. Chen, X.; Huo, L.; Jiao, C.; Li, S. Journal of analytical and applied pyrolysis TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J. Anal. Appl. Pyrolysis 2013, 100, 186–191.
  17. Ding, Y.; Swann, J.D.; Sun, Q.; Stoliarov, S.I.; Kraemer, R.H. Development of a pyrolysis model for glass fiber reinforced polyamide 66 blended with red phosphorus: Relationship between flammability behavior and material composition. Compos. Part B Eng. 2019, 176, 107263.
More
ScholarVision Creations