Peer Reviewed
SEM-PLS Approach to Green Building

Green buildings refer to buildings that decrease adverse environmental effects and maintain natural resources. They can diminish energy consumption, greenhouse gas emissions, the usage of non-renewable materials, water consumption, and waste generation while improving occupants’ health and well-being. As such, several rating tools and benchmarks have been developed worldwide to assess green building performance (GBP), including the Building Research Establishment Environmental Assessment Method (BREEAM) in the United Kingdom, German Sustainable Building Council (DGNB), Leadership in Energy and Environmental Design (LEED) in the United States and Canada, Comprehensive Assessment System for Built Environment Efficiency (CASBEE) in Japan, Green Star in Australia, Green Mark in Singapore, and Green Building Index in Malaysia. Energy management (EM) during building operation could also improve GBP. One of the best approaches to evaluating the impact of EM on GBP is by using structural equation modelling (SEM). SEM is a commanding statistical method to model testing. One of the most used SEM variance-based approaches is partial least squares (PLS), which can be implemented in the SmartPLS application. PLS-SEM uses path coefficients to determine the strength and significance of the hypothesised relationships between the latent constructs. 

energy management green building performance office building SEM-PLS
The building sector is one of the most energy-intensive sectors, irrespective of its geographical location [1]. It is estimated that buildings’ energy consumption accounts for approximately 32% of global energy use, and buildings are responsible for about 40% of the total energy-related carbon dioxide emissions [2]. This is due to the rapid depletion and inefficient use of natural resources and energy and increasing waste production in the building sector. However, buildings can conserve energy by appropriate resource management (RM) practices at the design, construction, and operation stages (see Figure 1).
Encyclopedia 01 00039 g001 550

Figure 1. Building recourse management at different stages.

Research suggests that implementing energy-efficiency strategies at the design stage can significantly influence building performance and reduce energy usage [3][4][5]. As such, there has been an increasing amount of literature on zero energy building construction and renewable energy sources [6]. These studies have investigated, proposed, and improved different parameters, indices, and approaches to improving building performance [7][8][9]. They primarily focus on enhancing building systems and integrating renewable energy at the design phase using various building performance simulation (BPS) tools. The most commonly used approach to applying BPS tools during the design phase is based on evaluating the simulation outcomes, and if not satisfactory, the design is altered until the desired results are achieved. One of the limitations of this approach is that it uses direct modelling and simulation workflow in which the impacts of modifying the values of parameters on energy performance are examined one at a time, without considering the combined impacts of parameters [10]. An accurate and simplified prediction method of users’ comfort in buildings is another major challenge of using BPS tools. Several parameters, such as human behaviour in buildings, their interventions in design conditions, resource usage, and management, can significantly negatively impact the predicted energy saving. In practice, it is a challenge for building designers to assess the possibility of achieving predicted energy usage at the design stage. There is also little published data on user interventions and RM during the operation phase of the buildings and their impact on energy usage. Figure 1 gives a brief description of RM.

References

  1. Hamdaoui, S.; Mahdaoui, M.; Allouhi, A.; El Alaiji, R.; Kousksou, T.; El Bouardi, A. Energy demand and environmental impact of various construction scenarios of an office building in Morocco. J. Clean. Prod. 2018, 188, 113–124.
  2. Jin, X.; Wu, J.; Mu, Y.; Wang, M.; Xu, X.; Jia, H. Hierarchical microgrid energy management in an office building. Appl. Energy 2017, 208, 480–494.
  3. Abediniangerabi, B.; Makhmalbaf, A.; Shahandashti, M. Deep learning for estimating energy savings of early-stage facade design decisions. Energy AI 2021, 5, 100077.
  4. Fan, Y.; Ito, K. Integrated building energy computational fluid dynamics simulation for estimating the energy-saving effect of energy recovery ventilator with CO2 demand-controlled ventilation system in office space. Indoor Built Environ. 2014, 23, 785–803.
  5. Shen, J.; Zhang, X.; Yang, T.; Tang, L.; Wu, Y.; Pan, S.; Wu, J.; Xu, P. The early design stage of a novel Solar Thermal Façade (STF) for building integration: Energy performance simulation and socio-economic analysis. Energy Procedia 2016, 96, 55–66.
  6. Rezaee, R.; Vakilinezhad, R.; Haymaker, J. Parametric framework for a feasibility study of zero-energy residential buildings for the design stage. J. Build. Eng. 2021, 35.
  7. Hu, M. Net Zero Energy Building: Predicted and Unintended Consequences; Routledge: Abingdon, UK, 2019.
  8. Lechner, N.; Wallace, C. Heating, Cooling, Lighting: Sustainable Design Methods for Architects, 4th ed.; Wiley: Hoboken, NJ, USA, 2015.
  9. Garg, V.; Mathur, J.; Bhatia, A. Building Energy Simulation: A Workbook Using DesignBuilder; CRC Press: Boca Raton, FL, USA, 2017.
  10. Kerdan, I.G.; Raslan, R.; Ruyssevelt, P.; Gálvez, D.M. An exergoeconomic-based parametric study to examine the effects of active and passive energy retrofit strategies for buildings. Energy Build. 2016, 133, 155–171.
More
Related Content
The evolving landscape of Corporate Social Responsibility (CSR) has transcended its traditional boundaries, transitioning into Environmental, Social, and Governance (ESG) principles and their more advanced iteration, ESG 2.0. Unlike traditional CSR, which primarily emphasizes voluntary ethical practices, ESG integrates sustainability into the core business strategy, transforming how corporations address environmental and societal challenges while enhancing shareholder value. This entry focuses specifically on the European and North American contexts, where regulatory pressures, investor demands, and societal expectations have played pivotal roles in accelerating this transition. Understanding the evolution from CSR to ESG practices is crucial, given the increasing complexity of global challenges such as climate change, inequality, and governance scandals. The emphasis on ESG 2.0 highlights a proactive, strategic approach to embedding sustainability into corporate DNA, ensuring relevance in a rapidly changing world.
Keywords: ESG; CSR; sustainability; accountability; stakeholder theory
This study evaluates the current scope of smart technology applications that support aging in place and identifies potential avenues for future research. The global demographic shift towards an aging population has intensified interest in technologies that enable older adults to maintain independence and quality of life within their homes. We conducted a systematic review of the scientific literature from Web of Science, PubMed, and ProQuest, identifying 44 smart technologies across 32 publications. These technologies were classified into three categories: nonmobile technologies for individual monitoring, nonmobile technologies for home environment monitoring, and wearable technologies for health and activity tracking. Notably, the research in this area has grown significantly since 2018; yet, notable gaps persist, particularly within the traditional disciplines related to aging and in the use of quantitative methodologies. This emerging field presents substantial opportunities for interdisciplinary research and methodological advancement, highlighting the need for well-developed research strategies to support the effective integration of smart technology in aging in place.
Keywords: smart technologies; healthy; application; aging in place; review
The increasing complexity of social science data and phenomena necessitates using advanced analytical techniques to capture nonlinear relationships that traditional linear models often overlook. This chapter explores the application of machine learning (ML) models in social science research, focusing on their ability to manage nonlinear interactions in multidimensional datasets. Nonlinear relationships are central to understanding social behaviors, socioeconomic factors, and psychological processes. Machine learning models, including decision trees, neural networks, random forests, and support vector machines, provide a flexible framework for capturing these intricate patterns. The chapter begins by examining the limitations of linear models and introduces essential machine learning techniques suited for nonlinear modeling. A discussion follows on how these models automatically detect interactions and threshold effects, offering superior predictive power and robustness against noise compared to traditional methods. The chapter also covers the practical challenges of model evaluation, validation, and handling imbalanced data, emphasizing cross-validation and performance metrics tailored to the nuances of social science datasets. Practical recommendations are offered to researchers, highlighting the balance between predictive accuracy and model interpretability, ethical considerations, and best practices for communicating results to diverse stakeholders. This chapter demonstrates that while machine learning models provide robust solutions for modeling nonlinear relationships, their successful application in social sciences requires careful attention to data quality, model selection, validation, and ethical considerations. Machine learning holds transformative potential for understanding complex social phenomena and informing data-driven psychology, sociology, and political science policy-making.
Keywords: machine learning in social sciences; nonlinear relationships; model interpretability; predictive analytics; imbalanced data handling
This study aims to develop a multifaceted conceptual basis for employee collaboration with regard to promoting organizational sustainability, which encompasses environmental, social, and economic dimensions. Employing a mixed-methods framework, the study integrates a thorough literature review with a qualitative content analysis. A distinctive feature of this investigation is its emphasis on incorporating collaborative methodologies into sustainability strategies across various organizational frameworks, illustrating how collaboration can be refined through adaptive leadership, interdisciplinary teams, and digital technologies. The results indicate that organizations characterized by a robust collaborative culture demonstrate greater success in fostering sustainable innovations, minimizing environmental repercussions, and enhancing employee engagement. Furthermore, the study introduces a novel model that correlates collaboration with operational sustainability, taking into account diverse levels of resource sharing, leadership engagement, and employee empowerment. By focusing on actionable strategies, this research provides novel insights into how adaptive leadership, digital tools, and shared responsibility can transform collaboration into a driver of sustainability. This research enriches the existing body of literature by presenting an evidence-based framework for cultivating sustainable organizational cultures and provides valuable insights for prospective research on harnessing collaboration to attain long-term sustainability goals.
Keywords: employee collaboration; organizational sustainability; collaborative culture; innovative practices; digital tools; sustainable organizational development
Wayfinding refers to the process of guiding individuals through built spaces, particularly in environments where navigation may be challenging due to complex layouts. In hospital settings, efficient wayfinding is essential as it directly impacts the experiences of patients, visitors, and staff. This entry focuses on wayfinding strategies in Australian hospitals, where research on this topic is limited. The entry uses a comparative case study approach to analyse various wayfinding techniques for non-emergency services, including physical signage, digital navigation systems, and spatial design elements across six hospitals in Australia. The findings indicate that combining visual cues, digital tools, and spatial planning improves navigation efficiency. However, the hospital size and layout significantly influence the effectiveness of these systems. This entry provides insights into the current wayfinding strategies and challenges in Australian hospitals and suggests further research on global case studies using the comparative framework and definitions provided here.
Keywords: wayfinding; Australian hospitals; Australian healthcare; hospital wayfinding; healthcare wayfinding; healthcare environment; hospital environment; hospital layout
Information
Subjects: Engineering, Civil
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : ,
View Times: 1.9K
Online Date: 18 Jun 2021
Video Production Service