Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 587 word(s) 587 2021-11-03 07:33:06 |
2 Done -7 word(s) 580 2021-11-11 02:41:16 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Kharlamova, M.V. SWCNTs in Magnetic Recording. Encyclopedia. Available online: https://encyclopedia.pub/entry/15885 (accessed on 23 April 2024).
Kharlamova MV. SWCNTs in Magnetic Recording. Encyclopedia. Available at: https://encyclopedia.pub/entry/15885. Accessed April 23, 2024.
Kharlamova, Marianna V.. "SWCNTs in Magnetic Recording" Encyclopedia, https://encyclopedia.pub/entry/15885 (accessed April 23, 2024).
Kharlamova, M.V. (2021, November 10). SWCNTs in Magnetic Recording. In Encyclopedia. https://encyclopedia.pub/entry/15885
Kharlamova, Marianna V.. "SWCNTs in Magnetic Recording." Encyclopedia. Web. 10 November, 2021.
SWCNTs in Magnetic Recording
Edit

Applications in magnet-recording devices rely on the combination and emergence of unique properties of single-walled carbon nanotubes (SWCNTs) and encapsulated materials. The entry “SWCNTs in magnetic recording” focuses on applications of filled SWCNTs in magnetic recording.

Magnetic Recording Single-walled carbon nanotubes (SWCNTs) magnetization

1. Introduction

The range of materials that can be filled inside Single-walled carbon nanotubes (SWCNTs) encompasses simple substances [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18], molecules [19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44] and chemical compounds [45][46][47][48][49][50][51][52][53][54][55][56][57][2][58][59][60][61][62][63][64][65][66][67][68][69][70] with an equally wide range of chemical and physical properties. If magnetic materials or substances are filled inside SWCNT the magnetism in such nanostructured composites can qualitatively differ from that of the macroscopic bulk. Applications in magnet-recording devices rely on the combination and emergence of unique properties of SWCNTs and encapsulated materials [71][72][73][74][75][76][77].

In Reference [73] a composite of Fe nanowires inside SWCNTs was prepared and its ferromagnetism at room temperature was detected. Reference [75] reported that the magnetization of Fe-filled SWCNTs exceeds that of pristine SWCNTs. A study employing X-ray magnetic circular dichroism and the superconducting quantum interference device of Fe encapsulated inside metallicity-sorted SWCNTs revealed the differences in the orbital and spin magnetic moments of the iron for SWCNTs with different conductivity type [74]. In Reference [71], it was found that small Ni clusters featured superparamagnetism at room temperature. Authors of Reference [78] measured the transport properties of Co cluster-filled SWCNTs. The cobalt nanoparticles encapsulated in SWCNTs were found to be ferromagnetic.

Figure 1 shows single traces of conductance (G (e2/h)) (e – the charge of electron, h – the Plank’s constant) measured as a function of gate voltage (Vg) and sweeping in-plane magnetic field (μ0H) (μ0 – the vacuum permeability, H – the magnetic field) [78]. The cobalt-filled SWCNT device was measured at T = 40 mK. The field was swept at a constant rate in either direction between -2.5 to +2.5 T. The conductance evolves in a continuous manner as the field is swept (Hsw) unless the sweeps go through mirrored critical field values (Figure 1a-c) at μ0H = ±μ0Hsw = ±1.28 T in each sweep direction. The forward and backward conductance trace show at their respective critical fields a symmetrical sudden jump (ΔGsw). The peculiar conductance traces correspond to a pronounced hysteresis, centred around H = 0. The sign and amplitude of the symmetric conductance jumps are shown in Figure 1d and depend strongly on Vg but they are always observed at the same critical fields (μ0Hsw = ±1.28 T) [78].

Figure 1. Conductance hysteresis loops of cobalt-filled carbon nanotubes at 40 mK. (a-c) Differential conductance dI/dV as a function of in-plane magnetic field μ0H for selected gate voltages. The field was at an angle of 25° with respect to the nanotube axis. The red and blue arrows in (a-c) indicate the field sweep direction. (d) The changes in amplitude and sign of the jumps for different Vg. Note the two different conductance color scales above and below Vg = -3.5 V. Reprinted with permission from [78]. Copyright 2011 American Chemical Society.

2. Properties

The magnetic properties of filled SWCNTs were also explored by calculations [14][79][80][81]. Local-spin-density-functional theory was applied to calculate the electronic and magnetic properties of Fe nanowires inside SWCNTs [14]. Larger magnetic moments as compared to the bulk Fe were revealed for the encapsulated Fe. The authors of reference [81] carried out ab initio calculations on the magnetic properties of Fe-filled SWCNTs. They suggested that the relative diameters of the nanowire and the SWCNT would decide the magnetic ordering in the nanowire. The magnetic ordering in freestanding Fe nanowires and Fe-filled different SWCNTs were calculated from first principles [80]. The freestanding Fe nanowires did show ferromagnetic ordering, but for the nanowires inside a SWCNTs antiferromagnetic ordering became preferable.

References

  1. P. Corio; A.P. Santos; P.S. Santos; M.L.A. Temperini; V.W. Brar; M.A. Pimenta; M.S. Dresselhaus; Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chemical Physics Letters 2004, 383, 475-480, 10.1016/j.cplett.2003.11.061.
  2. M. V. Kharlamova; L. V. Yashina; A. V. Lukashin; Comparison of modification of electronic properties of single-walled carbon nanotubes filled with metal halogenide, chalcogenide, and pure metal. Applied Physics B 2013, 112, 297-304, 10.1007/s00339-013-7808-y.
  3. M. V. Kharlamova; J. J. Niu; Comparison of metallic silver and copper doping effects on single-walled carbon nanotubes. Applied Physics B 2012, 109, 25-29, 10.1007/s00339-012-7091-3.
  4. M. V. Kharlamova; J. J. Niu; Donor doping of single-walled carbon nanotubes by filling of channels with silver. Journal of Experimental and Theoretical Physics 2012, 115, 485-491, 10.1134/s1063776112080092.
  5. E. Borowiak-Palen; M. H. Ruemmeli; T. Gemming; T. Pichler; R. Kalenczuk; S. Ravi P. Silva; Silver filled single-wall carbon nanotubes—synthesis, structural and electronic properties. Nanotechnology 2006, 17, 2415-2419, 10.1088/0957-4484/17/9/058.
  6. S. B. Fagan; A.G. Souza Filho; J. Mendes Filho; P. Corio; M.S. Dresselhaus; Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chemical Physics Letters 2005, 406, 54-59, 10.1016/j.cplett.2005.02.091.
  7. W. Li; M. Zhao; Y. Xia; T. He; C. Song; X. Lin; X. Liu; L. Mei; Silver-filled single-walled carbon nanotubes: Atomic and electronic structures from first-principles calculations. Physical Review B 2006, 74, 195421, 10.1103/physrevb.74.195421.
  8. M. V. Kharlamova; J. J. Niu; New method of the directional modification of the electronic structure of single-walled carbon nanotubes by filling channels with metallic copper from a liquid phase. JETP Letters 2012, 95, 314-319, 10.1134/s0021364012060057.
  9. R. Nakanishi; R. Kitaura; P. Ayala; H. Shiozawa; K. De Blauwe; P. Hoffmann; D. Choi; Y. Miyata; T. Pichler; H. Shinohara; et al. Electronic structure of Eu atomic wires encapsulated inside single-wall carbon nanotubes. Physical Review B 2012, 86, 115445, 10.1103/physrevb.86.115445.
  10. Jing Zhou; Xin Yan; Guangfu Luo; Rui Qin; Hong Li; Jing Lu; Wai Ning Mei; Zhengxiang Gao; Structural, Electronic, and Transport Properties of Gd/Eu Atomic Chains Encapsulated in Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2010, 114, 15347-15353, 10.1021/jp105274v.
  11. E.G. Gal'pern; I.V. Stankevich; A.L. Chistykov; L.A. Chernozatonskii; Carbon nanotubes with metal inside: electron structure of tubelenes [Li@C24]n and [K@C36]n. Chemical Physics Letters 1993, 214, 345-348, 10.1016/0009-2614(93)85647-7.
  12. X.-J. Du; J.-M. Zhang; S.-F. Wang; K.-W. Xu; Vincent Ji; First-principle study on energetics and electronic structure of a single copper atomic chain bound in carbon nanotube. The European Physical Journal B 2009, 72, 119-126, 10.1140/epjb/e2009-00328-7.
  13. V. V. Ivanovskaya; C. Köhler; G. Seifert; 3d metal nanowires and clusters inside carbon nanotubes: Structural, electronic, and magnetic properties. Physical Review B 2007, 75, 075410, 10.1103/physrevb.75.075410.
  14. Yong-Ju Kang; Jin Choi; Chang-Youn Moon; K. J. Chang; Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Physical Review B 2005, 71, 115441, 10.1103/physrevb.71.115441.
  15. Vincent Meunier; Hiroyuki Muramatsu; Takuya Hayashi; Yoong Ahm Kim; Daisuke Shimamoto; Humberto Terrones; Mildred S. Dresselhaus; Mauricio Terrones; Morinobu Endo; Bobby Sumpter; et al. Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters 2009, 9, 1487-1492, 10.1021/nl803438x.
  16. Jae-Hyeon Parq; Jaejun Yu; Gunn Kim; First-principles study of ultrathin (2×2) Gd nanowires encapsulated in carbon nanotubes. The Journal of Chemical Physics 2010, 132, 054701, 10.1063/1.3298693.
  17. Yi Sun; Xiaobao Yang; Jun Ni; Bonding differences between single iron atoms versus iron chains with carbon nanotubes: First-principles calculations. Physical Review B 2007, 76, 035407, 10.1103/physrevb.76.035407.
  18. Y. Xie; J. M. Zhang; Y. P. Huo; Structural, electronic and magnetic properties of hcp Fe, Co and Ni nanowires encapsulated in zigzag carbon nanotubes. The European Physical Journal B 2011, 81, 459-465, 10.1140/epjb/e2011-10658-4.
  19. Taishi Takenobu; Takumi Takano; Masashi Shiraishi; Yousuke Murakami; Masafumi Ata; Hiromichi Kataura; Yohji Achiba; Yoshihiro Iwasa; Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nature Materials 2003, 2, 683-688, 10.1038/nmat976.
  20. Jing Lu; Shigeru Nagase; Dapeng Yu; Hengqiang Ye; Rushan Han; Zhengxiang Gao; Shuang Zhang; Lianmao Peng; Amphoteric and Controllable Doping of Carbon Nanotubes by Encapsulation of Organic and Organometallic Molecules. Physical Review Letters 2004, 93, 116804-116804, 10.1103/physrevlett.93.116804.
  21. X. Liu; T. Pichler; M. Knupfer; M. S. Golden; J. Fink; H. Kataura; Y. Achiba; K. Hirahara; S. Iijima; Filling factors, structural, and electronic properties ofC60molecules in single-wall carbon nanotubes. Physical Review B 2002, 65, 045419, 10.1103/physrevb.65.045419.
  22. H. Shiozawa; H. Ishii; H. Kihara; N. Sasaki; S. Nakamura; T. Yoshida; Y. Takayama; T. Miyahara; S. Suzuki; Y. Achiba; et al. Photoemission and inverse photoemission study of the electronic structure ofC60fullerenes encapsulated in single-walled carbon nanotubes. Physical Review B 2006, 73, 075406, 10.1103/physrevb.73.075406.
  23. Mao-Hua Du; Hai-Ping Cheng; Manipulation of fullerene-induced impurity states in carbon peapods. Physical Review B 2003, 68, 113402, 10.1103/physrevb.68.113402.
  24. O. Dubay; G. Kresse; Density functional calculations for C60 peapods. Physical Review B 2004, 70, 165424, 10.1103/physrevb.70.165424.
  25. Jing Lu; Shigeru Nagase; Shuang Zhang; Lianmao Peng; Strongly size-dependent electronic properties in C60-encapsulated zigzag nanotubes and lower size limit of carbon nanopeapods. Physical Review B 2003, 68, 121402, 10.1103/physrevb.68.121402.
  26. Susumu Okada; Minoru Otani; Atsushi Oshiyama; Electron-state control of carbon nanotubes by space and encapsulated fullerenes. Physical Review B 2003, 67, 205411, 10.1103/physrevb.67.205411.
  27. Minoru Otani; Susumu Okada; Atsushi Oshiyama; Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes. Physical Review B 2003, 68, 125424, 10.1103/physrevb.68.125424.
  28. A. Rochefort; Electronic and transport properties of carbon nanotube peapods. Physical Review B 2003, 67, 115401, 10.1103/physrevb.67.115401.
  29. T. Pichler; C. Kramberger; P. Ayala; H. Shiozawa; M. Knupfer; M. H. Rümmeli; D. Batchelor; R. Kitaura; N. Imazu; K. Kobayashi; et al. Bonding environment and electronic structure of Gd metallofullerene and Gd nanowire filled single-wall carbon nanotubes. physica status solidi (b) 2008, 245, 2038-2041, 10.1002/pssb.200879644.
  30. P. Ayala; R. Kitaura; C. Kramberger; H. Shiozawa; N. Imazu; K. Kobayashi; D. Mowbray; P. Hoffmann; H. Shinohara; T. Pichler; et al. A Resonant Photoemission Insight to the Electronic Structure of Gd Nanowires Templated in the Hollow Core of SWCNTs. Materials Express 2011, 1, 30-35, 10.1166/mex.2011.1004.
  31. L. J. Li; A. Khlobystov; J. G. Wiltshire; G. A. D. Briggs; R. Nicholas; Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials 2005, 4, 481-485, 10.1038/nmat1396.
  32. Victor Manuel Garcia Suarez; Jaime Ferrer; Colin Lambert; Tuning the Electrical Conductivity of Nanotube-Encapsulated Metallocene Wires. Physical Review Letters 2006, 96, 106804, 10.1103/physrevlett.96.106804.
  33. Emma L. Sceats; Jennifer C. Green; Noncovalent interactions between organometallic metallocene complexes and single-walled carbon nanotubes. The Journal of Chemical Physics 2006, 125, 154704, 10.1063/1.2349478.
  34. Hidetsugu Shiozawa; Thomas Pichler; Alexander Grüneis; Rudolf Pfeiffer; Hans Kuzmany; Zheng Liu; Kazu Suenaga; Hiromichi Kataura; A Catalytic Reaction Inside a Single-Walled Carbon Nanotube. Advanced Materials 2008, 20, 1443-1449, 10.1002/adma.200701466.
  35. H. Shiozawa; T. Pichler; C. Kramberger; A. Grüneis; M. Knupfer; B. Büchner; V. Zólyomi; J. Koltai; J. Kürti; D. Batchelor; et al. Fine tuning the charge transfer in carbon nanotubes via the interconversion of encapsulated molecules. Physical Review B 2008, 77, 153402, 10.1103/physrevb.77.153402.
  36. Markus Sauer; Hidetsugu Shiozawa; Paola Ayala; Georgina Ruiz-Soria; Hiromichi Kataura; Kazuhiro Yanagi; Stefan Krause; Thomas Pichler; In situfilling of metallic single-walled carbon nanotubes with ferrocene molecules. physica status solidi (b) 2012, 249, 2408-2411, 10.1002/pssb.201200127.
  37. Xianjie Liu; Hans Kuzmany; Paola Ayala; Matteo Calvaresi; Francesco Zerbetto; Thomas Pichler; Selective Enhancement of Photoluminescence in Filled Single-Walled Carbon Nanotubes. Advanced Functional Materials 2012, 22, 3202-3208, 10.1002/adfm.201200224.
  38. Marianna V. Kharlamova; Markus Sauer; Takeshi Saito; Stefan Krause; Xianjie Liu; Kazuhiro Yanagi; Thomas Pichler; Hidetsugu Shiozawa; Inner tube growth properties and electronic structure of ferrocene-filled large diameter single-walled carbon nanotubes. physica status solidi (b) 2013, 250, 2575-2580, 10.1002/pssb.201300089.
  39. Markus Sauer; Hidetsugu Shiozawa; Paola Ayala; Georgina Ruiz-Soria; Xianjie Liu; Alexander Chernov; Stefan Krause; Kazuhiro Yanagi; Hiromichi Kataura; Thomas Pichler; et al. Internal charge transfer in metallicity sorted ferrocene filled carbon nanotube hybrids. Carbon 2013, 59, 237-245, 10.1016/j.carbon.2013.03.014.
  40. Marianna V. Kharlamova; Markus Sauer; Takeshi Saito; Yuta Sato; Kazu Suenaga; Thomas Pichler; Hidetsugu Shiozawa; Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene. Nanoscale 2014, 7, 1383-1391, 10.1039/c4nr05586a.
  41. Marianna V. Kharlamova; Markus Sauer; Alexander Egorov; Christian Kramberger; Takeshi Saito; Thomas Pichler; Hidetsugu Shiozawa; Temperature-dependent inner tube growth and electronic structure of nickelocene-filled single-walled carbon nanotubes. physica status solidi (b) 2015, 252, 2485-2490, 10.1002/pssb.201552206.
  42. M. V. Kharlamova; C. Kramberger; M. Sauer; K. Yanagi; T. Saito; T. Pichler; Inner tube growth and electronic properties of metallicity-sorted nickelocene-filled semiconducting single-walled carbon nanotubes. Applied Physics A 2018, 124, 247, 10.1007/s00339-018-1679-1.
  43. H. Shiozawa; T. Pichler; C. Kramberger; M. H. Rümmeli; D. Batchelor; Z. Liu; K. Suenaga; H. Kataura; S. R. P. Silva; Screening the Missing Electron: Nanochemistry in Action. Physical Review Letters 2009, 102, 046804, 10.1103/physrevlett.102.046804.
  44. Hidetsugu Shiozawa; Christian Kramberger; Mark Rümmeli; David Batchelor; Hiromichi Kataura; Thomas Pichler; S. Ravi P. Silva; Electronic properties of single-walled carbon nanotubes encapsulating a cerium organometallic compound. physica status solidi (b) 2009, 246, 2626-2630, 10.1002/pssb.200982344.
  45. M.V. Chernysheva; E.A. Kiseleva; N.I. Verbitskii; A.A. Eliseev; A.V. Lukashin; Yu.D. Tretyakov; S.V. Savilov; N.A. Kiselev; O.M. Zhigalina; A.S. Kumskov, A. V. Krestinin; et al. The electronic properties of SWNTs intercalated by electron acceptors. Physica E: Low-dimensional Systems and Nanostructures 2007, 40, 2283-2288, 10.1016/j.physe.2007.10.070.
  46. R.M. Zakalyukin; B.N. Mavrin; L.N. Dem’Yanets; N.A. Kiselev; Synthesis and characterization of single-walled carbon nanotubes filled with the superionic material SnF2. Carbon 2008, 46, 1574-1578, 10.1016/j.carbon.2008.06.055.
  47. M. V. Kharlamova; C. Kramberger; A. Mittelberger; K. Yanagi; T. Pichler; D. Eder; Silver Chloride Encapsulation-Induced Modifications of Raman Modes of Metallicity-Sorted Semiconducting Single-Walled Carbon Nanotubes. Journal of Spectroscopy 2018, 2018, 5987428, 10.1155/2018/5987428.
  48. Marianna V. Kharlamova; Christian Kramberger; Oleg Domanov; Andreas Mittelberger; Kazuhiro Yanagi; Thomas Pichler; Dominik Eder; Fermi level engineering of metallicity-sorted metallic single-walled carbon nanotubes by encapsulation of few-atom-thick crystals of silver chloride. Journal of Materials Science 2018, 53, 13018-13029, 10.1007/s10853-018-2575-y.
  49. Marianna V. Kharlamova; Christian Kramberger; Oleg Domanov; Andreas Mittelberger; Takeshi Saito; Kazuhiro Yanagi; Thomas Pichler; Dominik Eder; Comparison of Doping Levels of Single‐Walled Carbon Nanotubes Synthesized by Arc‐Discharge and Chemical Vapor Deposition Methods by Encapsulated Silver Chloride. physica status solidi (b) 2018, 255, 1800178, 10.1002/pssb.201800178.
  50. A.A. Eliseev; L.V. Yashina; M.M. Brzhezinskaya; M.V. Chernysheva; M.V. Kharlamova; N.I. Verbitsky; A.V. Lukashin; N.A. Kiselev; A.S. Kumskov; R.M. Zakalyuhin; et al. Structure and electronic properties of AgX (X=Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon 2010, 48, 2708-2721, 10.1016/j.carbon.2010.02.037.
  51. M. V. Kharlamova; A. A. Eliseev; L. V. Yashina; D. I. Petukhov; C. P. Liu; C. Y. Wang; D. A. Semenenko; A. I. Belogorokhov; Study of the electronic structure of single-walled carbon nanotubes filled with cobalt bromide. JETP Letters 2010, 91, 196-200, 10.1134/s0021364010040089.
  52. M. V. Kharlamova; L. V. Yashina; A. A. Eliseev; A. A. Volykhov; V. S. Neudachina; M. Brzhezinskaya; T. S. Zyubina; A. V. Lukashin; Yu. D. Tretyakov; Single-walled carbon nanotubes filled with nickel halogenides: Atomic structure and doping effect. physica status solidi (b) 2012, 249, 2328-2332, 10.1002/pssb.201200060.
  53. Marianna V. Kharlamova; Raman Spectroscopy Study of the Doping Effect of the Encapsulated Iron, Cobalt, and Nickel Bromides on Single-Walled Carbon Nanotubes. Journal of Spectroscopy 2015, 2015, 1-8, 10.1155/2015/653848.
  54. M. V. Kharlamova; A. A. Eliseev; L. V. Yashina; A.V. Lukashin; Yu.D. Tretyakov; Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. Journal of Physics: Conference Series 2012, 345, 012034, 10.1088/1742-6596/345/1/012034.
  55. M. V. Kharlamova; Electronic properties of single-walled carbon nanotubes filled with manganese halogenides. Applied Physics B 2016, 122, 791, 10.1007/s00339-016-0335-x.
  56. M. V. Kharlamova; L. Yashina; A. Volykhov; J. J. Niu; V. S. Neudachina; M. Brzhezinskaya; T. S. Zyubina; A. I. Belogorokhov; A. Eliseev; Acceptor doping of single-walled carbon nanotubes by encapsulation of zinc halogenides. The European Physical Journal B 2012, 85, 34, 10.1140/epjb/e2011-20457-6.
  57. M. V. Kharlamova; Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Applied Physics B 2013, 111, 725-731, 10.1007/s00339-013-7639-x.
  58. Paola Ayala; Ryo Kitaura; Ryo Nakanishi; Hidetsugu Shiozawa; Daisuke Ogawa; Patrick Hoffmann; Hinsanori Shinohara; Thomas Pichler; Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3nanowires inside carbon nanotubes. Physical Review B 2011, 83, 085407, 10.1103/physrevb.83.085407.
  59. M. V. Kharlamova; A. Volykhov; L. Yashina; A. V. Egorov; A. V. Lukashin; Experimental and theoretical studies on the electronic properties of praseodymium chloride-filled single-walled carbon nanotubes. Journal of Materials Science 2015, 50, 5419-5430, 10.1007/s10853-015-9086-x.
  60. M. V. Kharlamova; Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes. Applied Physics B 2014, 118, 27-35, 10.1007/s00339-014-8880-7.
  61. A. A. Eliseev; L. V. Yashina; N.I. Verbitskiy; M. Brzhezinskaya; M. V. Kharlamova; M.V. Chernysheva; A.V. Lukashin; N. Kiselev; A. Kumskov; B. Freitag; et al. Interaction between single walled carbon nanotube and 1D crystal in CuX@SWCNT (X=Cl, Br, I) nanostructures. Carbon 2012, 50, 4021-4039, 10.1016/j.carbon.2012.04.046.
  62. M.V. Chernysheva; A.A. Eliseev; A.V. Lukashin; Yu.D. Tretyakov; S.V. Savilov; N. Kiselev; O. Zhigalina; A. Kumskov; A.V. Krestinin; J.L. Hutchison; et al. Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique. Physica E: Low-dimensional Systems and Nanostructures 2006, 37, 62-65, 10.1016/j.physe.2006.10.014.
  63. Pavel V. Fedotov; Alexander Tonkikh; Ekaterina A. Obraztsova; Albert Nasibulin; Esko I. Kauppinen; Andrey Chuvilin; Elena Obraztsova; Optical properties of single-walled carbon nanotubes filled with CuCl by gas-phase technique. physica status solidi (b) 2014, 251, 2466-2470, 10.1002/pssb.201451240.
  64. M. V. Kharlamova; L. V. Yashina; A. V. Lukashin; Charge transfer in single-walled carbon nanotubes filled with cadmium halogenides. Journal of Materials Science 2013, 48, 8412-8419, 10.1007/s10853-013-7653-6.
  65. M. V. Kharlamova; C. Kramberger; Andreas Mittelberger; Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes. Applied Physics B 2017, 123, 239, 10.1007/s00339-017-0873-x.
  66. Emma L. Sceats; Jennifer C. Green; Stephanie Reich; Theoretical study of the molecular and electronic structure of one-dimensional crystals of potassium iodide and composites formed upon intercalation in single-walled carbon nanotubes. Physical Review B 2006, 73, 125441, 10.1103/physrevb.73.125441.
  67. Chiyung Yam; ChiChiu Ma; Xiujun Wang; Guanhua Chen; Electronic structure and charge distribution of potassium iodide intercalated single-walled carbon nanotubes. Applied Physics Letters 2004, 85, 4484, 10.1063/1.1819510.
  68. K. V. Christ; H. R. Sadeghpour; Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes. Physical Review B 2007, 75, 195418, 10.1103/physrevb.75.195418.
  69. M. V. Kharlamova; Novel approach to tailoring the electronic properties of single-walled carbon nanotubes by the encapsulation of high-melting gallium selenide using a single-step process. JETP Letters 2013, 98, 272-277, 10.1134/s0021364013180069.
  70. M. V. Kharlamova; Comparative analysis of electronic properties of tin, gallium, and bismuth chalcogenide-filled single-walled carbon nanotubes. Journal of Materials Science 2014, 49, 8402-8411, 10.1007/s10853-014-8550-3.
  71. Hidetsugu Shiozawa; Antonio Briones-Leon; Oleg Domanov; Georg Zechner; Yuta Sato; Kazu Suenaga; Takeshi Saito; Michael Eisterer; Eugen Weschke; Wolfgang Lang; et al. Nickel clusters embedded in carbon nanotubes as high performance magnets. Scientific Reports 2015, 5, 15033, 10.1038/srep15033.
  72. Ryo Kitaura; Daisuke Ogawa; Keita Kobayashi; Takeshi Saito; Satoshi Ohshima; Tetsuya Nakamura; Hirofumi Yoshikawa; Kunio Awaga; Hisanori Shinohara; High yield synthesis and characterization of the structural and magnetic properties of crystalline ErCl3 nanowires in single-walled carbon nanotube templates. Nano Research 2008, 1, 152-157, 10.1007/s12274-008-8013-8.
  73. E. Borowiak-Palen; Ernest Mendoza; A. Bachmatiuk; Mark Hermann Rümmeli; Thomas Gemming; Josep Nogues; Vassil Skumryev; Ryszard Kalenczuk; Thomas Pichler; S. Ravi P. Silva; et al. Iron filled single-wall carbon nanotubes – A novel ferromagnetic medium. Chemical Physics Letters 2006, 421, 129-133, 10.1016/j.cplett.2006.01.072.
  74. Antonio Briones-Leon; Paola Ayala; Xianjie Liu; Kazuhiro Yanagi; Eugen Weschke; Michael Eisterer; Hua Jiang; Hiromichi Kataura; Thomas Pichler; Hidetsugu Shiozawa; et al. Orbital and spin magnetic moments of transforming one-dimensional iron inside metallic and semiconducting carbon nanotubes. Physical Review B 2013, 87, 195435, 10.1103/physrevb.87.195435.
  75. Yongfeng Li; Toshiro Kaneko; Tomoyuki Ogawa; Migaku Takahashi; Rikizo Hatakeyama; Novel Properties of Single-Walled Carbon Nanotubes with Encapsulated Magnetic Atoms. Japanese Journal of Applied Physics 2008, 47, 2048-2055, 10.1143/jjap.47.2048.
  76. Koichiro Kasai; Joaquin Lorenzo Valmoria Moreno; Melanie Yadao David; Abdulla Ali Abdulla Sarhan; Nobuaki Shimoji; Hideaki Kasai; First-Principles Study of Electronic and Magnetic Properties of 3d Transition Metal-Filled Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics 2008, 47, 2317-2319, 10.1143/jjap.47.2317.
  77. M.V. Kharlamova; Electronic properties of pristine and modified single-walled carbon nanotubes. Physics-Uspekhi 2013, 56, 1047-1073, 10.3367/ufne.0183.201311a.1145.
  78. Jean-Pierre Cleuziou; Wolfgang Wernsdorfer; Thierry Ondarçuhu; Marc Monthioux; Electrical Detection of Individual Magnetic Nanoparticles Encapsulated in Carbon Nanotubes. ACS Nano 2011, 5, 2348-2355, 10.1021/nn2000349.
  79. L. V. Yashina; A. A. Eliseev; M. V. Kharlamova; A. A. Volykhov; A. V. Egorov; S. V. Savilov; A. V. Lukashin; R. Püttner; A. I. Belogorokhov; Growth and Characterization of One-Dimensional SnTe Crystals within the Single-Walled Carbon Nanotube Channels. The Journal of Physical Chemistry C 2011, 115, 3578-3586, 10.1021/jp1107087.
  80. Mariana Weissmann; G. García; Miguel Kiwi; R. Ramírez; Theoretical study of carbon-coated iron nanowires. Physical Review B 2004, 70, 201401, 10.1103/physrevb.70.201401.
  81. Mariana Weissmann; Griselda García; Miguel Kiwi; Ricardo Ramírez; Chu-Chun Fu; Theoretical study of iron-filled carbon nanotubes. Physical Review B 2006, 73, 125435, 10.1103/physrevb.73.125435.
More
Information
Subjects: Physics, Applied
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 542
Entry Collection: Environmental Sciences
Revisions: 2 times (View History)
Update Date: 11 Nov 2021
1000/1000