Summary

The advent of biopharmaceuticals in current medicine brought enormous benefits to the treatment of life-threatening human diseases (e.g., cancer, diabetes and neurodegenerative disorders), and improved the well-being of many people worldwide. The global portfolio of these therapeutic products include proteins and antibodies, nucleic acids, and cell-based products, and continues to expand at a rapid pace - approvals in the period 2015-2018 essentially double the typical five-yearly historical approval pace (G. Walsh, Nat. Biotechnol., 36:1136-1145, 2018) -, representing a significant share of the entire market of pharmaceuticals.

Innovation in the (bio)pharmaceutical industry has been driven towards the development of cost-effective manufacturing processes, envisaging the delivery of products in high quantity, with superior quality (purity), and high specificity, with the ultimate goal of benefiting patients. Progress in this direction have resulted from the application of novel technologies in the upstream stage (high-throughput, single-use devices, statistical optimization of media and fermentation conditions, QbD, and continuous processing), while at the downstream level, chromatography has evolved through the development of new resins and ligands, coupled with advances in process modelling, operating and control strategies.

An emerging trend is the application of alternative solvents such as ionic liquids and deep eutectic solvents, in which their structure and physicochemical properties can be tuned to address unmet needs in (bio)pharmaceutical research. These compounds may be derived from natural and reneawable sources and hold great promise in the development of efficient, sustainable and cost-effective biopharmaceuticals purification processes.

This Entry Collection aims to provide the latest progresses achieved in pharmaceuticals bioprocessing. We welcome submissions of original research, comprehensive reviews and perspectives, including, but not limited, to the following fields:

- Upstream processing (genetic engineering, systems biology, difficult-to-express proteins, expression conditions, Quality by Design approaches, process analytical technologies);

- Chromatographic purification methods (process modelling and control, continuous bioprocessing, design and characterization of resins and ligands, new formats);

- Alternative purification methods (aqueous biphasic systems, filtration, crystallization, precipitation);

- Application of neoteric solvents in upstream and downstream stages;

- Analytical characterization of biopharmaceuticals (stability, post-translational modifications, biological activity, immunogenicity); 

Expand All
Entries
Topic Review
Cell-Derived Vesicles for mRNA Delivery
The clinical translation of messenger mRNA (mRNA)-based therapeutics requires safe and effective delivery systems. Although considerable progress has been made on the development of mRNA delivery systems, many challenges, such as the dose-limiting toxicity and specific delivery to extrahepatic tissues, still remain. Cell-derived vesicles, a type of endogenous membranous particle secreted from living cells, can be leveraged to load mRNA during or after their biogenesis. They have received increasing interest for mRNA delivery due to their natural origin, good biocompatibility, cell-specific tropism, and unique ability to cross physiological barriers.
  • 1.3K
  • 28 Dec 2022
Topic Review
Exosomes in Designing Drug Delivery Systems
Exosomes are a subpopulation of extravascular vesicles with a diameter of 30–150 nm. They are cellular-communication mediators, often reaching very distant organism tissues. Information is transferred by exosomal cargo, composed of a wide variety of macromolecules such as nucleic acids, proteins, and lipids. Exosomes possess natural specific cell targeting properties that are desirable in designing targeted macromolecules (DNA and RNA) and drug delivery systems (doxorubicin, paclitaxel, and taxol). In this context, exosomes can be defined as bio-derived drug transporting and protecting devices for the treatment of bacterial (toxoplasmosis and salmonellosis), viral (AIDS and hepatitis B), and cancer (lung, pancreatic, colon, brain, and breast) diseases. Extensive research proves that exosomes’ natural cargo can double-act, both increasing and decreasing the disease severity. In this case, the exosomes need to be prepared, namely, their origin and their cargo need to be screened and known. Thus, appropriate methods for intact and price-effective exosome isolation are needed with further exosome properties description. Among many utilized isolation methods, the most common are ultracentrifugation, polymer-based precipitation, and affinity precipitation-isolation systems, but novel microfluidic methods compromising high efficacy and purity are being developed. 
  • 995
  • 19 Dec 2022
Topic Review
Potential Antioxidant Multitherapy against Complications Occurring in Sepsis
Septic shock represents one of the main causes of mortality in critical patient units with an increase in its incidence, and it is also associated with a high burden of morbidity in surviving patients. Within the pathogenesis of sepsis, oxidative stress plays an important role. The excessive formation of reactive oxygen species (ROS) leads to mitochondrial damage and vasomotor dysfunction that characterizes those patients who fall into septic shock. Despite numerous studies carried out in patients with septic shock of different causes, effective therapies have not yet been developed to reduce the morbidity and mortality associated with this pathology. Despite the contribution of ROS in the pathophysiology of sepsis and septic shock, most studies performed in humans, with antioxidant monotherapies, have not resulted in promising data. Nevertheless, some interventions with compounds such as ascorbate, N-acetylcysteine, and selenium would have a positive effect in reducing the morbidity and mortality associated with this pathology.
  • 867
  • 17 Dec 2022
Topic Review
Significant Cell Populations for Regenerative Skin Wound Therapies
Considerable progresses have been accomplished in cell biology fields, and the existing evidence has revealed the effectiveness of cell therapy for pathologic wounds. Transplantation of keratinocytes, fibroblasts, platelets, and more recently, stem cells (SCs) can promote wound healing through de-novo synthesis, secretion, and release of a wide range of cell signaling molecules such as growth factors (GFs) and cytokines.
  • 695
  • 16 Dec 2022
Topic Review
Osteoblast-Osteoclast Communication and Bone Homeostasis
Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts was reviewed.
  • 1.2K
  • 16 Dec 2022
Topic Review
Restrictions and Advantages of Non-Invasive Prenatal Testing (NIPT)
There are two major principle modalities to perform prenatal genetic diagnostics: by invasive or non-invasive means. Invasive prenatal genetic diagnostics depends on fetal or placental tissues, which can only be acquired by approaching the unborn with a needle to gain this material for further in vitro studies. Conversely, non-invasive tests do not disturb the fetal or placental tissues at all. The newest non-invasive prenatal diagnostic test approach is the so-called non-invasive prenatal testing (NIPT). Here an overview on real advantages and still critical issues of this approach are put together.
  • 1.3K
  • 16 Dec 2022
Topic Review
Insulitis in Human Type 1 Diabetic Pancreas
Type 1 diabetes (T1D) is an autoimmune disease with immune cells’ islet infiltration (called “insulitis”), which leads to beta cell loss. Despite being the critical element of T1D occurrence and pathogenesis, insulitis is often present in a limited percentage of islets, also at diagnosis. Therefore, it is needed to define reproducible methods to detect insulitis and beta-cell decline, to allow accurate and early diagnosis and to monitor therapy. This goal is still far due to the morphological aspect of islet microvasculature, which is rather dense and rich, and is considerably rearranged during insulitis. More studies on microvasculature are required to understand if contrast-enhanced ultrasound sonography measurements of pancreatic blood-flow dynamics may provide a clinically deployable predictive marker to predict disease progression and therapeutic reversal in pre-symptomatic T1D patients. It is needed to clarify the relation between insulitis and the dynamics of β cell loss and with coexisting mechanisms of dysfunction, according to clinical stage, as well as the micro vessels’ dynamics and microvasculature reorganization. The ideal cell-based therapy of T1D should start from an early diagnosis allowing a sufficient isolation of specific Procr+ progenitors, followed by the generation and expansion of islet organoids, which could be transplanted coupled to an immune-regulatory therapy which will permit the maintenance of pancreatic islets and an effective and long-lasting insulitis reversal.
  • 1.4K
  • 14 Dec 2022
Topic Review
Phase Transition of Lipid Nanoparticles for Drug Delivery
Lipid based nanoparticles effectively transport delicate molecules for therapeutic purposes, protecting them from degradation, increasing their stability in the blood circulation and allowing to convey and release the transported substances in specific areas of the body. The formulation of liposomes, cubosomes and hexosomes can be tuned to obtain pH- or temperature responsive nanoparticles. Understanding the response to such external stimuli is of paramount importance for the design and production of efficient drug delivery systems. 
  • 1.3K
  • 13 Dec 2022
Topic Review
Assessment of Nanomaterials’ Hemotoxicity
The potential use of nanomaterials in medicine offers opportunities for novel therapeutic approaches to treating complex disorders. For that reason, a new branch of science, named nanotoxicology, which aims to study the dangerous effects of nanomaterials on human health and on the environment, has recently emerged. However, the toxicity and risk associated with nanomaterials are unclear or not completely understood. The development of an adequate experimental strategy for assessing the toxicity of nanomaterials may include a rapid/express method that will reliably, quickly, and cheaply make an initial assessment. One possibility is the characterization of the hemocompatibility of nanomaterials, which includes their hemolytic activity as a marker.
  • 1.5K
  • 13 Dec 2022
Topic Review
3D Bioprinting Techniques
Additive manufacturing, more often referred to as “3D printing,” is the method of fabricating three-dimensional objects by adding successive layers of materials at a regulated rate and thickness. These materials could be made of concrete, metals, ceramics, polymers, resins, biomaterials, or other substances. The dearth of variety in 3D-printable materials continues even though printing time, processing speed, and printing resolution have all increased. The compatibility and flowability of printing ink with the current printing procedures are crucial for developing fields such as the 3D printing of biomaterials, tissues, and high-viability cells.
  • 1.4K
  • 12 Dec 2022
  • Page
  • of
  • 65
>>