Summary

On 11 March 2020, the World Health Organization declared COVID-19 a global pandemic, and the disease now affects nearly every country and region. Caused by SARS-CoV-2, COVID-19 continues nearly 18 months later to present significant challenges to health systems and public health in both hemispheres, as well as the economies of every country. The morbidity and mortality of the infection caused by SARS-CoV-2 has been significant, and various waves of disease outbreaks initially overwhelmed many hospitals and clinics and continue to do so in many countries. This influences everyone, and public health countermeasures have been dramatic in terms of their impact on employment, social systems, and mental health. This entry collection aims to gather diverse fields about COVID-19, including in epidemiology, public health, medicine, genetics, systems biology, informatics, data science, engineering, sociology, anthropology, nursing, environmental studies, statistics, and psychology.

Expand All
Entries
Topic Review Peer Reviewed
Telemental Health and Diverse Populations amid COVID-19
Telemental health is defined as the delivery of psychological and mental health services via telecommunication technologies, including telephone-delivered therapy, videoconferencing, and internet-delivered programs. Research indicates that telemental health services are as effective as in-person services, and a dramatic increase in the use of telemental health has been observed during COVID-19. However, there are still persistent challenges and concerns about mental health providers’ competencies, clients’ data privacy, and legal and regulatory issues during this pandemic. Additionally, disparities in the use of telemental health services with diverse populations, based on factors such as age, gender, ethnicity, socioeconomic status, language, and culture, have been identified during this pandemic.
  • 720
  • 29 Mar 2023
Topic Review
New-Onset Liver Injuries Due to COVID-19
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted the world and caused the 2019 coronavirus disease (COVID-19) pandemic. The clinical manifestations of the virus can vary from patient to patient, depending on their respective immune system and comorbidities. SARS-CoV-2 can affect patients through two mechanisms: directly by targeting specific receptors or by systemic mechanisms.
  • 636
  • 17 Mar 2023
Topic Review
Oncogenic Potential of SARS-CoV-2
The relationship between viral infections and the risk of developing cancer is well known. Multiple mechanisms participate in and determine this process. The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in the deaths of millions of people worldwide.
  • 866
  • 14 Mar 2023
Topic Review
Plant Produced Biopharmaceuticals against SARS-CoV-2
SARS-CoV-2 is an enveloped RNA virus with a single-stranded, positive-sense genome of ~29.9 kB in size. The virus consists of four major structural proteins, named spike (S), nucleocapsid (N), envelope (E), and membrane proteins (M). The S protein which is present as a crown-like spike on the outer surface of the virus plays a major role in viral entry into mammalian cells. Specifically, the virus uses the receptor binding domain (RBD) on the S protein to interact with human angiotensin-converting enzyme 2 (ACE2) receptor as a critical initial step to enter target cells. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. 
  • 1.1K
  • 10 Mar 2023
Topic Review
SARS-CoV-2 Infection and the Testis
Many studies have suggested that SARS-CoV-2, directly or indirectly, can affect the male reproductive system, although the underlined mechanisms have not been completely elucidated yet. The main data regarding the morphological alterations in the testes emerged from autoptic studies that revealed interstitial congestion, micro thrombosis, reduction of Sertoli, Leydig, and germinal cells, infiltrated immune cells, and atrophic seminiferous tubules consistent with orchitis. Furthermore, men with severe infection exhibit sperm parameter alterations, together with abnormalities of the hypothalamic–pituitary–testis axis, strongly suggesting that SARS-CoV-2 could increase the risk of male infertility.
  • 703
  • 09 Mar 2023
Topic Review
Tackling Pandemics through Computer-Aided Drug Discovery Approaches
Since its outbreak in December 2019, the COVID-19 pandemic has caused the death of more than 6.5 million people around the world. The high transmissibility of its causative agent, the SARS-CoV-2 virus, coupled with its potentially lethal outcome, provoked a profound global economic and social crisis. The urgency of finding suitable pharmacological tools to tame the pandemic shed light on the ever-increasing importance of computer simulations in rationalizing and speeding up the design of new drugs, further stressing the need for developing quick and reliable methods to identify novel active molecules and characterize their mechanism of action. 
  • 1.1K
  • 08 Mar 2023
Topic Review
ACE2 as Link between COVID-19 and Parkinson’s Disease
Coronavirus disease 2019 (COVID-19) is frequently accompanied by neurological manifestations such as headache, delirium, and epileptic seizures, whereas ageusia and anosmia may appear before respiratory symptoms. Among the various neurological COVID-19-related comorbidities, Parkinson’s disease (PD) has gained increasing attention. Some cases of PD disease have been linked to COVID-19, and both motor and non-motor symptoms in Parkinson’s disease patients frequently worsen following SARS-CoV-2 infection. Although it is unclear whether PD increases the susceptibility to SARS-CoV-2 infection or whether COVID-19 increases the risk of or unmasks future cases of PD, emerging evidence sheds more light on the molecular mechanisms underlying the relationship between these two diseases. Among them, angiotensin-converting enzyme 2 (ACE2), a significant component of the renin-angiotensin system (RAS), seems to play a pivotal role. ACE2 is required for the entry of SARS-CoV-2 to the human host cells, and ACE2 dysregulation is implicated in the severity of COVID-19-related acute respiratory distress syndrome (ARDS). ACE2 imbalance is implicated in core shared pathophysiological mechanisms between PD and COVID-19, including aberrant inflammatory responses, oxidative stress, mitochondrial dysfunction, and immune dysregulation. ACE2 may also be implicated in alpha-synuclein-induced dopaminergic degeneration, gut–brain axis dysregulation, blood–brain axis disruption, autonomic dysfunction, depression, anxiety, and hyposmia, which are key features of PD.
  • 795
  • 03 Mar 2023
Topic Review
COVID-19 Vaccination in Patients with Malignant Disease
Vaccination plays an important role in the prevention of infection and subsequent severe COVID-19 among the general population. Compared to the general population, patients with malignancy are more likely to develop a less proficient immune response upon vaccination. This is mainly caused by disease-associated or therapy-led immune deficiency. Therefore, patients with cancer are usually prioritized for vaccinations but excluded from registration in clinical trials. 
  • 815
  • 02 Mar 2023
Topic Review
Nanotechnology for Neurological Disorders after Long COVID Syndrome
Long-term neurological complications, persisting in patients who cannot fully recover several months after severe SARS-CoV-2 coronavirus infection, are referred to as neurological sequelae of the long COVID syndrome. Among the numerous clinical post-acute COVID-19 symptoms, neurological and psychiatric manifestations comprise prolonged fatigue, “brain fog”, memory deficits, headache, ageusia, anosmia, myalgias, cognitive impairments, anxiety, and depression lasting several months. Considering that neurons are highly vulnerable to inflammatory and oxidative stress damages following the overproduction of reactive oxygen species (ROS), neuroinflammation and oxidative stress have been suggested to dominate the pathophysiological mechanisms of the long COVID syndrome. It is emphasized that mitochondrial dysfunction and oxidative stress damages are crucial for the pathogenesis of neurodegenerative disorders. Importantly, antioxidant therapies have the potential to slow down and prevent disease progression. However, many antioxidant compounds display low bioavailability, instability, and transport to targeted tissues, limiting their clinical applications. Various nanocarrier types, e.g., liposomes, cubosomes, solid lipid nanoparticles, micelles, dendrimers, carbon-based nanostructures, nanoceria, and other inorganic nanoparticles, can be employed to enhance antioxidant bioavailability. Here, the potential of phytochemical antioxidants and other neuroprotective agents (curcumin, quercetin, vitamins C, E and D, melatonin, rosmarinic acid, N-acetylcysteine, and Ginkgo Biloba derivatives) in therapeutic strategies for neuroregeneration is highlighted. A particular focus is given to the beneficial role of nanoparticle-mediated drug-delivery systems in addressing the challenges of antioxidants for managing and preventing neurological disorders as factors of long COVID sequelae.  
  • 790
  • 14 Mar 2023
Topic Review
Obesity and Respiratory Infections
Obesity has become a major metabolic disorder due to a combination of genetic, nutritional, and environmental factors. Energy balance in the body is sustained by regulating food intake and energy expenditure. Excessive calorie consumption and/or inadequate energy expenditure result in the accumulation of excess body fat, which eventually leads to an obese phenotype. Obesity has long been linked to increased susceptibility and severity of infectious diseases of the respiratory tract. Studies have shown that Body Mass Index (BMI) is linked to worse outcomes and increased severity of respiratory tract infections, such as non-allergic rhinitis and influenza-like illness. During the 2009 H1N1 pandemic and the ongoing SARS-CoV-2 (COVID-19) pandemic, obesity also became a significant risk factor for severe illness and higher mortality.
  • 875
  • 27 Feb 2023
  • Page
  • of
  • 74
>>