Summary

With the growth of satellite and airborne-based platforms, remote sensing is gaining increasing attention in recent decades. Every day, sensors acquire data with different modalities and several resolutions. Leveraging on their complementary properties is a key scientific challenge, usually called remote sensing data fusion. Data fusion can be performed at three different processing levels: 1) pixel-based or raw level; 2) object-based or feature level; 3) decision level. Fusion at pixel level is often called image fusion. It means fusion at the lowest processing level referring to the merging of digital numbers or measured physical quantities. It uses co-registered raster data acquired by different sources. The co-registration step is of crucial importance because misregistration usually causes evident artifacts. Fusion at feature level requires the extraction of objects recognized in several sources of data. This is the goal of this entry collection, which will focus both on methodological and practical aspects of remote sensing data fusion.

Expand All
Entries
Topic Review
Autonomous Vehicle
An Autonomous Vehicle (AV), or a driverless car, or a self-driving vehicle is a car, bus, truck, or any other vehicle that is able to drive from point A to point B and perform all necessary driving operations and functions without any human intervention. An Autonomous Vehicle is normally equipped with different types of sensors to perceive the surrounding environment, including Normal Vision Cameras, Infrared Cameras, RADAR, LiDAR, and Ultrasonic Sensors.  An autonomous vehicle should be able to detect and recognise all type of road users including surrounding vehicles, pedestrians, cyclists, traffic signs, road markings, and can segment the free spaces, intersections, buildings, and trees to perform a safe driving task.  Currently, no realistic prediction expects we see fully autonomous vehicles earlier than 2030. 
  • 933
  • 17 Feb 2021
Topic Review
Silicon Multi-Mode Routing Devices
The multi-mode routing devices are used for transferring higher-order modes in the multi-mode bus waveguide without introducing mode-dependent losses or inter-modal crosstalk, including multi-mode bend, multi-mode crossing and multi-mode splitter.
  • 1.1K
  • 29 Sep 2020
Topic Review
Laser Absorption Spectroscopy
Laser absorption spectroscopy (LAS) is an absorption spectroscopic method that employs a laser as the light source and measures the chemical concentration based on detection of a variation of laser beam intensity after transmission along the optical path. 
  • 5.6K
  • 10 Sep 2020
Topic Review
Gyrotrons
Gyrotrons are among the most powerful sources of coherent radiation that operate in CW and long pulse regimes in the sub-THz and the THz frequency ranges of the electromagnetic spectrum, i.e. between 0.3 THz and 3.0 THz (corresponding to wavelengths from 1.0 to 0.1 mm). This region, which spans between the frequency bands occupied by various electronic and photonic devices, respectively, is habitually called a THz power gap. The underlying mechanism of the operation of the gyrotron involves a formation of bunches of electrons gyrating in a helical electron beam and their synchronous interaction with a fast (i.e. having a superluminal phase velocity) electromagnetic wave, producing a bremsstrahlung radiation. In contrast to the slow-wave tubes, which utilize tiny structures with dimensions comparable to the wavelength of the radiation, the gyrotrons have a simpler resonant system (cavity resonator) with dimensions that are much greater than the wavelength. This allows much more powerful electron beams to be used and thus higher output powers to be achieved. Although in comparison with the classical microwave tubes the gyrotrons are characterized by greater volume and weight due to the presence of bulky parts (such as superconducting magnets and massive collectors where the energy of the spent electron beam is dissipated) they are much more compact and can easily be embedded in a sophisticated laboratory equipment (e.g. spectrometers, technological systems, etc.) than other devices such as free-electron lasers (FEL) and radiation sources based on electron accelerators. Nowadays, the gyrotrons are used as powerful sources of coherent radiation in the wide fields of high-power sub-THz and THz science and technologies [1][2][3].
  • 1.9K
  • 29 Oct 2020
Topic Review
Crowd Sensing
Crowd sensing (also known as participatory sensing, or mobile crowdsensing) is a means of collecting people’s surrounding information via mobile sensing devices. Its highly expressive and powerful sensing capabilities can carry out a big sensing project by fragmenting tasks into small pieces. The key to success is to get more participants to collect higher quality data. 
  • 4.7K
  • 28 Oct 2020
Topic Review
Classification Tools Heart Rate Variability
Chronic stress is the main cause of health problems in high-risk jobs. Wearable sensors can become an ecologically valid method of stress level assessment in real-life applications. We sought to determine a non-invasive technique for objective stress monitoring. Data were collected from firefighters during 24-h shifts using sensor belts equipped with a dry-lead electrocardiograph (ECG) and a three-axial accelerometer. Levels of stress experienced during fire incidents were evaluated via a brief self-assessment questionnaire. Types of physical activity were distinguished basing on accelerometer readings, and heart rate variability (HRV) time series were segmented accordingly into corresponding fragments. Those segments were classified as stress/no-stress conditions. Receiver Operating Characteristic (ROC) analysis showed true positive classification as stress condition for 15% of incidents (while maintaining almost zero False Positive Rate), which parallels the amount of truly stressful incidents reported in the questionnaires. These results show a firm correspondence between the perceived stress level and physiological data. Psychophysiological measurements are reliable indicators of stress even in ecological settings and appear promising for chronic stress monitoring in high-risk jobs, such as firefighting.
  • 829
  • 28 Oct 2020
Topic Review
Two-Wire Resistance Temperature Detectors
In the remote measurement system, the lead wire resistance of the resistance sensor will produce a large measurement error. In order to ensure the accuracy of remote measurement, a novel lead-wire-resistance compensation technique is proposed, which is suitable for two-wire resistance temperature detector. By connecting a zener diode in parallel with the RTD and an interface circuit specially designed for it, the lead-wire-resistance value can be accurately measured by virtue of the constant voltage characteristic of the zener diode when reverse breakdown, compensation can thereby be made when calculating the resistance of RTD. Through simulation verification and practical circuit test, when the sensor resistance is in 848 - 2120 Ω scope and the lead wire resistance is less than 50 Ω, the proposed technology can ensure the measuring error of the sensor resistance within ± 1 Ω and the temperature measurement error within ± 0.3 ℃ for RTDs performing 1000 Ω at 0 ℃. Therefore, this method is able to accurately compensate the resistance of two-wire RTD lead and is suitable for most applications.
  • 1.2K
  • 29 Oct 2020
Topic Review
IoT Wearable Sensors
 Interconnected sensing technology, such as IoT wearables and devices, present a promising solution for objective, reliable, and remote monitoring, assessment, and support through ambient assisted living.
  • 2.1K
  • 13 Apr 2021
Topic Review
Takagi–Sugeno Fuzzy-PI Controller Hardware
The intelligent system Field Programmable Gate Array (FPGA) is represented as Takagi--Sugeno Fuzzy-PI controller. The implementation uses a fully parallel strategy associated with a hybrid bit format scheme (fixed-point and floating-point). Two hardware designs are proposed; the first one uses a single clock cycle processing architecture, and the other uses a pipeline scheme. The bit accuracy was tested by simulation with a nonlinear control system of a robotic manipulator. The area, throughput, and dynamic power consumption of the implemented hardware are used to validate and compare the results of this proposal. The results achieved allow the use of the proposed hardware in applications with high-throughput, low-power, and ultra-low-latency requirements such as teleoperation of robot manipulators, tactile internet, or industry 4.0 automation, among others.
  • 859
  • 29 Oct 2020
Topic Review
Aerial LiDAR Data Augmentation
Direct point-cloud visualisation is a common approach for visualising large datasets of aerial terrain LiDAR scans. However, because of the limitations of the acquisition technique, such visualisations often lack the desired visual appeal and quality, mostly because certain types of objects are incomplete or entirely missing (e.g., missing water surfaces, missing building walls and missing parts of the terrain). To improve the quality of direct LiDAR point-cloud rendering, we present a point-cloud processing pipeline that uses data fusion to augment the data with additional points on water surfaces, building walls and terrain through the use of vector maps of water surfaces and building outlines. In the last step of the pipeline, we also add colour information, and calculate point normals for illumination of individual points to make the final visualisation more visually appealing. We evaluate our approach on several parts of the Slovenian LiDAR dataset.
  • 1.2K
  • 04 Jun 2021
  • Page
  • of
  • 15
>>