Summary

Sample preparation is the most crucial step in the analytical procedure designed for implementation in any analytical application (food analysis, bionalysis, forensics, toxicology, environmental monitoring etc). It is the limiting factor in chemical analysis since it is time consuming and it can potentially introduce errors. No one can doubt that the best approach would be the direct introduction of the sample to the instrument; however, this is rarely feasible. Efficient sample pretreatment is inevitably required as the instrument technology has produced highly sophisticated and sensitive analytical equipment. Hence, the analytical scientists have to develop and apply a suitable sample preparation protocol that ensures that the composition of the sample remains unchanged, no impurities are introduced during handling, all interferences have been left back, and the analytes’ concentration is not only at detectable levels, but it can also be quantified precisely and accurately and that the matrix of the sample is compatible with the analytical technique. Extraction techniques are the most powerful tool available to analytical chemists and lab practitioners. Whether sorbent-based or solvent-based, extraction techniques provide the necessary tools to handle the sample in a way that can reveal all the important information. All advantages in instrumentation have been exploited to the fullest and the lifetime of the instrument is prolonged in a seamless operation mode. This entry collection aims to highlight some applications of extraction techniques in sample preparation.

Expand All
Entries
Topic Review
Volatiles in Food Products
The evaluation of volatiles in food is an important aspect of food production. It gives knowledge about the quality of foods and their relationship to consumers’ choices. Alcohols, aldehydes, acids, esters, terpenes, pyrazines, and furans are the main chemical groups that are involved in aroma formation. They are products of food processing: thermal treatment, fermentation, storage, etc. Food aroma is a mixture of varied molecules. Because of this, the analysis of aroma composition can be challenging. 
  • 5.7K
  • 27 Sep 2021
Topic Review
SPE/DLLME for Determining Plasticizer Residues
This entry aims to compare two extraction procedures for the analysis of phthalates (PAE) in hot drinks collected from vending machines, usually coffee and tea. The two analytical procedures rely on solid phase extraction (SPE) using C18 cartridge and ultrasound and vortex assisted liquid-liquid dispersive microextraction (DLLME) to mechanically improve dispersion, each followed by a routine analytical method such as GC- FID. Seven phthalates (DMP, DEP, DiBP, DBP, DEHP, DOP, DDP) were analyzed and determined. All analytical parameters (i.e., recovery, limit of detection, limit of quantification, enrichment factors, repeatability, reproducibility) were studied and discussed, as well as the matrix effect. The whole procedure was applied to hot drink matrices, for example coffee, decaffeinated coffee.
  • 594
  • 13 Sep 2021
Topic Review
Endometrial Sampling Procedures in Cattle
Endometrial infections are a common cause of reproductive loss in cattle. Accurate diagnosis is important to reduce the economic losses caused by endometritis. A range of sampling procedures have been developed which enable collection of endometrial tissue or luminal cells or uterine fluid. However, as these are all invasive procedures, there is a risk that sampling around the time of breeding may adversely affect subsequent pregnancy rate. 
  • 1.2K
  • 23 Jul 2021
Topic Review
Alkenylbenzenes and Food
Alkenylbenzenes are potentially toxic (genotoxic and carcinogenic) compounds present in plants such as basil, tarragon, anise star and lemongrass. These plants are found in various edible consumer products, e.g., popularly used to flavour food. Thus, there are concerns about the possible health consequences upon increased exposure to alkenylbenzenes especially due to food intake. It is therefore important to constantly monitor the amounts of alkenylbenzenes in our food chain. 
  • 1.1K
  • 22 Jun 2021
Topic Review
TBC-assisted Cooling Air System Simulation
Thermal barrier coating (TBC) and cooling air systems are among the technologies that have been introduced and applied in pursuing the extensive development of advanced gas turbine. TBC is used to protect the gas turbine components from the higher operating temperature of advanced gas turbine, whereas cooling air systems are applied to assist TBC in lowering the temperature exposure of protected surfaces. Generally, a gas turbine operates in three main operational modes, which are base load, peak load, and part peak load. TBC performance under these three operational modes has become essential to be studied, as it will provide the gas turbine owners not only with the behaviors and damage mechanism of TBC but also a TBC life prediction in a particular operating condition.
  • 1.6K
  • 23 Jun 2021
Topic Review
Graphene-Based Nanomaterials in Environmental Analysis
Sample preparation is an essential and preliminary procedure of most chemical analyses. Due to the sample diversity, the selection of appropriate adsorbents for the effective preparation and separation of different samples turned out to be important for the methods. By exploiting the rapid development of material science, some novel adsorption materials, especially graphene-based nanomaterials, have shown supremacy in sample pretreatment. In this review, a discussion between these nanomaterials will be made, as well as some basic information about their synthesis. The focus will be on the different environmental applications that use these materials.
  • 694
  • 11 May 2021
Topic Review
Cell Suspension of Eysenhardtia platycarpa
Eysenhardtia platycarpa (Fabaceae) is a medicinal plant used in Mexico. Biotechnological studies of its use are lacking. The objective of this work was to establish a cell suspension culture (CSC) of E. platycarpa, determine the phytochemical constituents by spectrophotometric and gas chromatography‒mass spectrometry (GC‒MS) methods, evaluate its antifungal activity, and compare them with the intact plant. Friable callus and CSC were established with 2 mg/L 1-naphthaleneacetic acid plus 0.1 mg/L kinetin. The highest total phenolics of CSC was 15.6 mg gallic acid equivalents (GAE)/g dry weight and the total flavonoids content ranged from 56.2 to 104.1 µg quercetin equivalents (QE)/g dry weight. The GC‒MS analysis showed that the dichloromethane extracts of CSC, sapwood, and heartwood have a high amount of hexadecanoic acid (22.3–35.3%) and steroids (13.5–14.7%). Heartwood and sapwood defatted hexane extracts have the highest amount of stigmasterol (~23.4%) and β-sitosterol (~43%), and leaf extracts presented β-amyrin (16.3%). Methanolic leaf extracts showed mostly sugars and some polyols, mainly D-pinitol (74.3%). Compared with the intact plant, dichloromethane and fatty hexane extracts of CSC exhibited percentages of inhibition higher for Sclerotium cepivorum: 71.5% and 62.0%, respectively. The maximum inhibition for Rhizoctonia solani was with fatty hexane extracts of the sapwood (51.4%). Our study suggests that CSC extracts could be used as a possible complementary alternative to synthetic fungicides.
  • 613
  • 19 Mar 2021
Topic Review
Ironmaking Process
Fe is extracted from Fe ore and converted into alloys. This metallurgical process is important. The raw materials of the iron-bearing mineral are introduced in the blast furnace (BF), wherein aside from Fe and C, other elements are also subjected to roasting in the furnace.
  • 1.7K
  • 10 Mar 2021
Topic Review
Fabric Phase Sorptive Extraction
Fabric phase sorptive extraction (FPSE) is an evolutionary sample preparation technique which was introduced in 2014, delivering all green analytical chemistry (GAC) requirements by implementing a natural or synthetic permeable and flexible fabric substrate to host a chemically coated sol–gel organic–inorganic hybrid sorbent in the form of an ultra-thin coating. This construction results in a versatile, fast, and sensitive micro-extraction device. The user-friendly FPSE membrane allows direct extraction of analytes with no sample modification, thus eliminating/minimizing the sample pre-treatment steps, which are not only time consuming, but are also considered the primary source of major analyte loss. Sol–gel sorbent-coated FPSE membranes possess high chemical, solvent, and thermal stability due to the strong covalent bonding between the fabric substrate and the sol–gel sorbent coating. Subsequent to the extraction on FPSE membrane, a wide range of organic solvents can be used in a small volume to exhaustively back-extract the analytes after FPSE process, leading to a high preconcentration factor. In most cases, no solvent evaporation and sample reconstitution are necessary. 
  • 1.9K
  • 08 Feb 2021
Topic Review
Graphene Oxide
Graphene oxide (GO) is a chemical compound with a form similar to graphene that consists of one-atom-thick two-dimensional layers of sp2-bonded carbon. Graphene oxide exhibits high hydrophilicity and dispersibility. Thus, it is difficult to be separated from aqueous solutions. Therefore, functionalization with magnetic nanoparticles is performed in order to prepare a magnetic GO nanocomposite that combines the sufficient adsorption capacity of graphene oxide and the convenience of magnetic separation. Moreover, the magnetic material can be further functionalized with different groups to prevent aggregation and extends its potential application. Until today, a plethora of magnetic GO hybrid materials have been synthesized and successfully employed for the magnetic solid-phase extraction of organic compounds from environmental, agricultural, biological, and food samples. The developed GO nanocomposites exhibit satisfactory stability in aqueous solutions, as well as sufficient surface area. Thus, they are considered as an alternative to conventional sorbents by enriching the analytical toolbox for the analysis of trace organic compounds.
  • 1.6K
  • 15 Jan 2021
  • Page
  • of
  • 7
>>