Topic Review
BKCa Channel Function in Cellular Membranes
Alterations in the activity of BKCa channels, responsible for the generation of the overall magnitude of Ca2+-activated K+ current at the whole-cell level, occur through allosteric mechanisms. The collaborative interplay between membrane depolarization and heightened intracellular Ca2+ ion concentrations collectively contribute to the activation of BKCa channels.
  • 119
  • 30 Jan 2024
Topic Review
Bland–Altman Agreement Analysis
The Bland–Altman Limits of Agreement is a popular and widespread means of analyzing the agreement of two methods, instruments, or raters in quantitative outcomes. An agreement analysis could be reported as a stand-alone research article but it is more often conducted as a minor quality assurance project in a subgroup of patients, as a part of a larger diagnostic accuracy study, clinical trial, or epidemiological survey. Consequently, such an analysis is often limited to brief descriptions in the main report. Therefore, in several medical fields, it has been recommended to report specific items related to the Bland–Altman analysis. Seven proposals were identified from a MEDLINE/PubMed search on March 03, 2020, three of which were derived by reviewing anesthesia journals. Broad consensus was seen for the a priori establishment of acceptability benchmarks, estimation of repeatability of measurements, description of the data structure, visual assessment of the normality and homogeneity assumption, and plotting and numerically reporting both bias and the Bland–Altman Limits of Agreement, including respective 95% confidence intervals. Abu-Arafeh et al. provided the most comprehensive and prudent list, identifying 13 key items for reporting (Br. J. Anaesth. 2016, 117, 569–575). The 13 key items should be applied by researchers, journal editors, and reviewers in the future, to increase the quality of reporting Bland–Altman agreement analyses.
  • 882
  • 27 Oct 2020
Topic Review
Cadmium and Lead Exposure
This entry provides information relevant to public health policy regarding advisable exposure limits for cadmium (Cd) and lead (Pb) that have no biologic role in humans. All of their perceptible effects are toxic. These metals exist in virtually all foodstuffs. Foods which are frequently consumed in large quantities such as cereals, rice, potatoes and vegetables contribute the most to total intake of these metals. Because Cd and Pb exposure are highly prevalent, even a small increase in disease risk can result in a large number of people affected by a disease that is preventable. Public measures to minimize environmental pollution and the food-chain transfer of Cd and Pb are required to prevent Cd- and Pb- related ailments and mortality as are risk reduction measures that set a maximally permissible concentration of Cd and Pb in staple food to the lowest achievable levels.
  • 1.6K
  • 29 Oct 2020
Topic Review
Calcium and Autophagy in Alzheimer’s Disease
Alzheimer’s disease (AD) is an age-related brain disorder that causes progressive neurodegeneration predominantly in the cortical and hippocampal brain regions. Major hallmarks of AD are the progressive impairment of memory storage and accumulation of fibrillary amyloid plaques in patient’s brains. Autophagy is a process that maintains healthy cells, organelles, proteins, and nutrient homeostasis in living organisms. Three types of autophagy are observed in mammalian cells depending on the mode of substrate delivery: macroautophagy, chaperone-mediated autophagy, and microautophagy.
  • 308
  • 24 May 2023
Topic Review
Calcium Dysregulation in Alzheimer’s Disease
Intracellular calcium (Ca2+) is an important second messenger that regulates multiple cellular functions, such as synaptic plasticity, action potentials, and learning and memory. Ca2+ dyshomeostasis, on the other hand, contributes to detrimental mechanisms such as necrosis, apoptosis, autophagy deficits, and neurodegeneration. Perturbations in intracellular Ca2+ are involved in many neurodegenerative diseases including Alzheimer's disease (AD), Parkinson’s disease, and Huntington’s disease.  Ca2+ dyshomeostasis is an early event in the AD timeline. Ca2+ dysregulation in AD comes as a result of hyperactivity of Ca2+ channels in the plasma membrane and intracellular compartments. It does not seem to be restricted to neurons, but rather is a global phenomenon that affects many cell types in the brain.
  • 813
  • 25 Dec 2020
Topic Review
Calcium Phosphate Nanocluster Complexes
Calcium phosphate nanocluster complexes comprise a core of amorphous calcium phosphate and a sequestering shell of intrinsically disordered phosphopeptides or phosphoproteins. Solutions containing the nanocluster complexes can be thermodynamically stable or metastable due to a tendency to form a precipitate enriched in calcium phosphate. Theoretical and biophysical studies with native and recombinant phosphopeptides have shown how the radius of the core and the stability of the solution depend on the concentration of the sequestering peptide, its affinity for the calcium phosphate and its concentration in relation to the concentration of the calcium phosphate. The thickness of the sequestering shell depends on the conformation of the peptide on the core surface. A sequestering peptide is a flexible sequence including one or more short linear motifs, each of which usually contains several phosphorylated and other acidic residues.  These are the main binding sites to the core so that a peptide with several binding motifs can forms loops and trains on the core surface. Calcium phosphate nanocluster complexes were first identified as substructures of casein micelles in milk and have been prepared as individual particles from peptides derived from caseins and osteopontin. Stable biofluids containing nanocluster complexes cannot cause soft tissues to become mineralized whereas stable or metastable biofluids containing nanocluster complexes can help to mineralize hard tissues.
  • 1.4K
  • 09 Nov 2020
Topic Review
Calcium Sources to Somatic Release of Serotonin
The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release. 
  • 540
  • 09 Feb 2022
Topic Review
Calcium’s Role and Signaling in Muscle Aging
Calcium signaling involves the movement of calcium ions within or between cells, which can affect the electrochemical gradients between intra- and extracellular membranes, ligand binding, enzyme activity, and other mechanisms that determine cell fate. Calcium signaling in muscle, as elucidated by the sliding filament model, plays a significant role in muscle contraction. However, as organisms age, alterations occur within muscle tissue. These changes include sarcopenia, loss of neuromuscular junctions, and changes in mineral concentration, all of which have implications for calcium’s role. Additionally, a field of study that has gained recent attention, cellular senescence, is associated with aging and disturbed calcium homeostasis, and is thought to affect sarcopenia progression. 
  • 239
  • 06 Dec 2023
Topic Review
Carbon Monoxide in Cardioprotection and Platelet
Nitric oxide (NO) and carbon monoxide (CO) represent a pair of biologically active gases with an increasingly well-defined range of effects on circulating platelets. These gases interact with platelets and cells in the vessels and heart and exert fundamentally similar biological effects, albeit through different mechanisms and with some peculiarity. Within the cardiovascular system, for example, the gases are predominantly vasodilators and exert antiaggregatory effects, and are protective against damage in myocardial ischemia-reperfusion injury. Differently from NO, only a limited number of studies have been carried out on CO effects on platelets and CO and cardioprotection.
  • 353
  • 04 Apr 2023
Topic Review Video
Carbonic Anhydrases in Zebrafish
Zebrafish (Danio rerio) is most important model organism to study different physiological and biological roles of different genes that are relevant to human. The physiological roles performed by carbonic anhydrases (CAs) and carbonic anhydrase related proteins (CARPs) is not an exception to this. The best-known function of CAs is the regulation of acid–base balance. In addition, studies performed with zebrafish, among others, have revealed important roles for these proteins in many other physiological processes, some of which had not yet been predicted in the light of previous studies and suggestions and the roles include such as pigmentation and motor coordination.
  • 454
  • 20 Apr 2022
  • Page
  • of
  • 32