Topic Review
In Situ Smart Hydrogels
With the advances in biomaterials and the understanding of the tumor microenvironment, in situ stimulus-responsive hydrogels, also called in situ smart hydrogels, have been extensively investigated for local anticancer therapy due to their injectability, compatibility and responsiveness to various stimuli (pH, enzyme, heat, light, magnetic fields, electric fields etc.).
  • 550
  • 08 Oct 2022
Topic Review
In Vitro Models of the Blood–Cerebrospinal Fluid Barrier
The blood–cerebrospinal fluid (CSF) barrier (BCSFB), an under-studied brain barrier site compared to the blood–brain barrier (BBB), can be considered a potential therapeutic target to improve the delivery of CNS therapeutics and provide brain protection measures. Therefore, leveraging robust and authentic in vitro models of the BCSFB can diminish the time and effort spent on unproductive or redundant development activities by a preliminary assessment of the desired physiochemical behavior of an agent toward this barrier.
  • 667
  • 30 Sep 2022
Topic Review
Induced Tissue-Specific Stem Cells (iTSCs)
Induced tissue-specific stem cells (iTSCs) are partially reprogrammed cells which have an intermediate state, such as progenitors or stem cells. They originate from the de-differentiation of differentiated somatic cells into pluripotent stem cells, such as induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs), or from the differentiation of undifferentiated cells. They show a limited capacity to differentiate and a morphology similar to that of somatic cell stem cells present in tissues, but distinct from that of iPSCs and ESCs. iTSCs can be generally obtained 7 to 10 days after reprogramming of somatic cells with Yamanaka’s factors, and their fibroblast-like morphology remains unaltered. iTSCs can also be obtained directly from iPSCs cultured under conditions allowing cellular differentiation. In this case, to effectively induce iTSCs, additional treatment is required, as exemplified by the conversion of iPSCs into naïve iPSCs. iTSCs can proliferate continuously in vitro, but when transplanted into immunocompromised mice, they fail to generate solid tumors (teratomas), implying loss of tumorigenic potential. The low tendency of iTSCs to elicit tumors is beneficial, especially considering applications for regenerative medicine in humans. Several iTSC types have been identified, including iTS-L, iTS-P, and iTS-D, obtained by reprogramming hepatocytes, pancreatic cells, and deciduous tooth-derived dental pulp cells, respectively. This review provides a brief overview of iPSCs and discusses recent advances in the establishment of iTSCs and their possible applications in regenerative medicine.
  • 568
  • 11 Oct 2021
Topic Review
Inflammatory Pain Study in Animal-Models
Pain is an easily recognized sensation that is experienced by humans and animals alike. However, the process behind the production of the pain experience is a complex pathway that requires parallel integration of both the emotional and sensory experiences together with noxious perceptual information registered by multiple layers of our brain structure with the purpose of defending our body from harm’s way. Here, the complete protocol that is being adapted for inflammatory pain study in animals induced by different phlogogenic agents and different assessment methods were elaborated along with the underlying mechanism of actions. This provides a concise idea and improves our scientists’ understanding of inflammatory pain management in future research.
  • 2.4K
  • 05 Nov 2020
Topic Review
Inhaled MSCs for Lung Diseases
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. It is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient.
  • 458
  • 10 May 2021
Topic Review
Inhibiting Angiogenesis by Anti-Cancer Saponins
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis.
  • 502
  • 24 Mar 2023
Topic Review Peer Reviewed
Inhibitory Actions of Clinical Analgesics, Analgesic Adjuvants, and Plant-Derived Analgesics on Nerve Action Potential Conduction
The action potential (AP) conduction in nerve fibers plays a crucial role in transmitting nociceptive information from the periphery to the cerebral cortex. Nerve AP conduction inhibition possibly results in analgesia. It is well-known that many analgesics suppress nerve AP conduction and voltage-dependent sodium and potassium channels that are involved in producing APs. The compound action potential (CAP) recorded from a bundle of nerve fibers is a guide for knowing if analgesics affect nerve AP conduction. This entry mentions the inhibitory effects of clinically used analgesics, analgesic adjuvants, and plant-derived analgesics on fast-conducting CAPs and voltage-dependent sodium and potassium channels. The efficacies of their effects were compared among the compounds, and it was revealed that some of the compounds have similar efficacies in suppressing CAPs. It is suggested that analgesics-induced nerve AP conduction inhibition may contribute to at least a part of their analgesic effects.
  • 660
  • 01 Dec 2022
Topic Review
Innovations in Chewable Formulations and 3D Printing
Since their introduction, chewable dosage forms have gained traction due to their ability to facilitate swallowing, especially in paediatric, geriatric and dysphagia patients. Their benefits stretch beyond human use to also include veterinary applications, improving administration and palatability in different animal species. Despite their advantages, current chewable formulations do not account for individualised dosing and palatability preferences. In light of this, three-dimensional (3D) printing, and in particular the semi-solid extrusion technology, has been suggested as a novel manufacturing method for producing customised chewable dosage forms. This advanced approach offers flexibility for selecting patient-specific doses, excipients, and organoleptic properties, which are critical for ensuring efficacy, safety and adherence to the treatment. 
  • 601
  • 07 Sep 2022
Topic Review
Inositol 1,4,5-Trisphosphate Receptors
Inositol 1,4,5-trisphosphate receptors (ITPRs) are intracellular calcium release channels located on the endoplasmic reticulum of virtually every cell.
  • 672
  • 30 Oct 2020
Topic Review
Insights into the Pharmacological Effects of Flavonoids
Flavonoids are widely occurring secondary metabolites of plants. Currently, there is a trend of article numbers increasing, which focuses on the computer modeling of flavonoid interactions with biological targets. Such studies help to accumulatethe data on lead compounds that can find medicinal implementation, including COVID-19. Flavanonol taxifolin demonstrated wound-healing activity. Luteolin, apigenin, and wogonin, which can be classified as flavones, show induced neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.
  • 610
  • 10 Jun 2022
  • Page
  • of
  • 106
Video Production Service