Topic Review
Microbiota-derived Short-Chain Fatty Acids and Obesity
Microbiota-derived Short-Chain Fatty Acids (SCFAs), primarily acetate, propionate and butyrate, are metabolites produced by gut microbiota via dietary non-digestible carbohydrates (CHO) fermentation. Maternal very low-calorie ketogenic diet (VLCKD) during pregnancy and lactation stimulates the growth of diverse species of SCFA-producing bacteria, which may induce epigenetic changes in infant obese gene expression and modulate adipose tissue inflammation in obesity.
  • 546
  • 29 Oct 2021
Topic Review
Microbiota–Gut–Brain Axis
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide.
  • 785
  • 05 Jan 2021
Topic Review
Microbiota, Diet and Mucus in Inflammatory Bowel Disease
The gastrointestinal tract is optimized to efficiently absorb nutrients and provide a competent barrier against a variety of lumen environmental compounds. Different regulatory mechanisms jointly collaborate to maintain intestinal homeostasis, but alterations in these mechanism lead to a dysfunctional gastrointestinal barrier and are associated to several inflammatory conditions usually found in chronic pathologies such as inflammatory bowel disease (IBD). The gastrointestinal mucus, mostly composed of mucin glycoproteins, covers the epithelium and plays an essential role in digestive and barrier functions. However, its regulation is very dynamic and is still poorly understood. This review presents some aspects concerning the role of mucus in gut health and its alterations in IBD. In addition, the impact of gut microbiota and dietary compounds as environmental factors modulating the mucus layer is addressed. To date, studies have evidenced the impact of the three-way interplay between the microbiome, diet and the mucus layer on the gut barrier, host immune system and IBD. This review emphasizes the need to address current limitations on this topic, especially regarding the design of robust human trials and highlights the potential interest of improving our understanding of the regulation of the intestinal mucus barrier in IBD.
  • 548
  • 21 Oct 2021
Topic Review
MicroRNAs in Hepatic Ischemia–Reperfusion Injury
Hepatic ischemia–reperfusion injury (IRI) is one of the main factors for early allograft dysfunction (EAD), which may lead to graft rejection, graft loss, or shortened graft life in liver transplantation. Hepatic IRI appears to be inevitable during the majority of liver procurement and transportation of donor organs, resulting in a cascade of biological changes. The activation of signaling pathways during IRI results in the up- and downregulation of genes and microRNAs (miRNAs). miRNAs are ~21 nucleotides in length and well-characterized for their role in gene regulations; they have recently been used for therapeutic approaches in addition to their role as biomarkers for many diseases. Various miRNAs have been identified in association with hepatic IRI that either exaggerate or ameliorate the hepatic IRI. Altering targeted miRNA expression has great potential to reduce early graft dysfunction and improve patient outcome. Strategies to implement this approach have been studied using hepatic cell lines subjected to oxygen deprived conditions in vitro, as well as animal models after induction of hepatic IRI through warm ischemia in vivo. By studying the mechanisms of specific miRNAs, the up- or downregulation during hepatic IRI reveals whether that miRNA can ameliorate or exaggerate the metabolism and functions of the liver. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels can be used to indicate when liver injury is present and improve diagnosis accuracy along with miRNA biomarkers. The manipulation of miRNAs could have an influence on the inflammatory and oxidative stress pathways associated with hepatic IRI.
  • 357
  • 15 Apr 2022
Topic Review
MicroRNAs in Ulcerative Colitis
Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), characterized by chronic inflammation of the colon and rectum. Inflammation confined to the mucosa is distributed continuously from the rectum to the proximal colon in UC and causes bloody stools, diarrhea, and abdominal pain.
  • 441
  • 20 Dec 2021
Topic Review
Microvascular Invasion in Hepatocellular Carcinoma
Microvascular invasion (MVI) is regarded as a sign of early metastasis in liver cancer and can be only diagnosed by a histopathology exam in the resected specimen. Preoperative prediction of MVI status may exert an effect on patient treatment management, for instance, to expand the resection margin.
  • 498
  • 16 Dec 2021
Topic Review
Microvascular Thrombosis and Liver Fibrosis Progression
Fibrosis is a frequent consequence of organ injury. The formation of an extracellular matrix (ECM) depends on a complex cascade of cellular and molecular pathways, the chronic activation of which results in a sustained fibrogenic process that leads to structural changes and, ultimately, to dysfunction of the affected organ. Thus, fibrosis is a major contributor to organ failure in human pathophysiology.
  • 450
  • 06 Jul 2023
Topic Review
Microwave Ablation Techniques for Pancreatic Lesions
Thermal ablation is increasingly being utilized for the management of solid parenchymal tumors, such as hepatocellular cancer, renal tumors, thyroid nodules, and pulmonary tumors. However, its application in the management of pancreas lesions was delayed due to fears of causing iatrogenic thermal injury to the surrounding organs. The initial success of radiofrequency ablation (RFA) in inoperable pancreatic cancers led to its application in pancreatic neuroendocrine tumors and pancreatic cystic neoplasms (PCLs).
  • 190
  • 15 Nov 2023
Topic Review
Minerals in Inflammatory Bowel Diseases
The chronic character of inflammatory bowel diseases, such as Crohn’s disease and ulcerative colitis, results in various complications. One of them is osteoporosis, manifested by low bone mineral density, which leads to an increased risk of fractures. The aetiology of low bone mineral density is multifactorial and includes both diet and nutritional status. Calcium is the most often discussed minerals with regard to bone mineral density. Moreover, phosphorus; magnesium and sodium are also involved in the formation of bone mass. Patients suffering from inflammatory bowel diseases frequently consume inadequate amounts of the aforementioned minerals  or their absorption is disturbed, resulting innutritional deficiency and an increased risk of osteoporosis. 
  • 757
  • 06 Nov 2020
Topic Review
Mitochondrial Dysfunction and Acute Fatty Liver of Pregnancy
The liver is one of the richest organs in mitochondria, serving as a hub for key metabolic pathways such as β-oxidation, the tricarboxylic acid (TCA) cycle, ketogenesis, respiratory activity, and adenosine triphosphate (ATP) synthesis, all of which provide metabolic energy for the entire body. Mitochondrial dysfunction has been linked to subcellular organelle dysfunction in liver diseases, particularly fatty liver disease. Acute fatty liver of pregnancy (AFLP) is a life-threatening liver disorder unique to pregnancy, which can result in serious maternal and fetal complications, including death. Pregnant mothers with this disease require early detection, prompt delivery, and supportive maternal care. AFLP was considered a mysterious illness and though its pathogenesis has not been fully elucidated, molecular research over the past two decades has linked AFLP to mitochondrial dysfunction and defects in fetal fatty-acid oxidation (FAO). Due to deficient placental and fetal FAO, harmful 3-hydroxy fatty acid metabolites accumulate in the maternal circulation, causing oxidative stress and microvesicular fatty infiltration of the liver, resulting in AFLP. 
  • 657
  • 11 May 2022
  • Page
  • of
  • 66
ScholarVision Creations