Topic Review
3D Printing in Complex Medical Procedures
Medicine is a rapidly-evolving discipline, with progress picking up pace with each passing decade. This constant evolution results in the introduction of new tools and methods, which in turn occasionally leads to paradigm shifts across the affected medical fields. The following review attempts to showcase how 3D printing has begun to reshape and improve processes across various medical specialties and where it has the potential to make a significant impact. 
  • 411
  • 18 Mar 2022
Topic Review
3D Printing in Hip Surgery
Three-dimensional printing, also known as additive manufacturing, is the process of creating objects from a 3D digital model layer by layer. Its origin dates back to 1984, when Chuck Hall developed his patent “Apparatus for production of three-dimensional objects by stereolithography”. There are many surgical applications of 3D printing in hip surgery, most of them based on CT images. 
  • 91
  • 04 Feb 2024
Topic Review
3D Printing in Ophthalmology
Three-dimensional (3D) printing is a process in which materials are added together in a layer-by-layer manner to construct customized products. Many different techniques of 3D printing exist, which vary in materials used, cost, advantages, and drawbacks. Medicine is increasingly benefiting from this transformative technology, and the field of ophthalmology is no exception. The possible 3D printing applications in eyecare are vast and have been explored in the literature, such as 3D-printed ocular prosthetics, orbital implants, educational and anatomical models, as well as surgical planning and training. 
  • 141
  • 01 Feb 2024
Topic Review
3D Printing in Pharmaceutical Application
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production.
  • 665
  • 25 Jan 2022
Topic Review
3D Printing in Prosthetic Dentistry
The speed of progress in the evolution of digital dental manufacturing has become truly remarkable. Subtractive methods have achieved remarkable levels of both efficiency and precision in achieving accurate fits, while additive techniques such as 3D printing are gaining prominence at an escalating rate.
  • 356
  • 18 Jun 2024
Topic Review
3D Printing of Dental Prostheses
Revolutionary fabrication technologies such as three-dimensional (3D) printing to develop dental structures are expected to replace traditional methods due to their ability to establish constructs with the required mechanical properties and detailed structures. Three-dimensional printing, as an additive manufacturing approach, has the potential to rapidly fabricate complex dental prostheses by employing a bottom-up strategy in a layer-by-layer fashion. This new technology allows dentists to extend their degree of freedom in selecting, creating, and performing the required treatments. Three-dimensional printing has been narrowly employed in the fabrication of various kinds of prostheses and implants. There is still an on-demand production procedure that offers a reasonable method with superior efficiency to engineer multifaceted dental constructs. 
  • 525
  • 05 May 2023
Topic Review
3D-Assisted Acetabular Fracture Surgery
The techniques currently used in 3D-assisted acetabular fracture surgery are 3D printing and visual surgical planning, 3D printing and pre-contouring of implants, and custom-made patient-specific implants. Three-dimensional-assisted surgery compared to conventional surgery reduces operation time, intraoperative blood loss, intraoperative fluoroscopy usage, and complication rate. Evidence for the improvement of postoperative fracture reduction and physical functioning is limited, because of heterogeneity and varying qualities of the studies.
  • 552
  • 28 Oct 2021
Topic Review
3D-Bioprinting for Chronic Wound
Skin substitutes can provide a temporary or permanent treatment option for chronic wounds. The selection of skin substitutes depends on several factors, including the type of wound and its severity. Full-thickness skin grafts (SGs) require a well-vascularised bed and sometimes will lead to contraction and scarring formation. Besides, donor sites for full-thickness skin grafts are very limited if the wound area is big, and it has been proven to have the lowest survival rate compared to thick- and thin-split thickness. Tissue engineering technology has introduced new advanced strategies since the last decades to fabricate the composite scaffold via the 3D-bioprinting approach as a tissue replacement strategy. Considering the current global donor shortage for autologous split-thickness skin graft (ASSG), skin 3D-bioprinting has emerged as a potential alternative to replace the ASSG treatment. The three-dimensional (3D)-bioprinting technique yields scaffold fabrication with the combination of biomaterials and cells to form bioinks. 
  • 1.5K
  • 08 Jan 2022
Topic Review
3D-Printed Porous Titanium Alloy Pore Structure onBone Regeneration
As a biomedical material, porous titanium alloy has gained widespread recognition and application within the field of orthopedics. Its remarkable biocompatibility, bioactivity, and mechanical properties establish it as a promising material for facilitating bone regeneration. A well-designed porous structure can lower the material’s modulus while retaining ample strength, rendering it more akin to natural bone tissue. The repair and replacement of a wide range of bone defects caused by diseases, trauma, and aging has been an important subject for centuries.
  • 75
  • 28 Feb 2024
Topic Review
3D-Printed Splints Therapy for Temporomandibular Disorders
In the field of dentistry, digital technology is developing very quickly. There is an increasing demand for the most efficient use of expensive digital equipment. More and more dental practices are using digital scanners and digital facebows. It is an excellent option to improve 3D splint therapy in temporomandibular disorders. Dental offices and dental laboratories will rapidly adopt 3D-printed orthodontic appliances. The benefits are its accuracy and a light workload. It is precise, long-lasting, less expensive and quicker than the conventional method.
  • 551
  • 25 May 2023
  • Page
  • of
  • 1352
Video Production Service