Topic Review
Severe COVID-19 Lung Infection
Periodontal bacteria dissemination into the lower respiratory tract may create favorable conditions for severe COVID-19 lung infection. Once lung tissues are colonized, cells that survive persistent bacterial infection can undergo permanent damage and accelerated cellular senescence. Consequently, several morphological and functional features of senescent lung cells facilitate SARS-CoV-2 replication. The higher risk for severe SARS-CoV-2 infection, the virus that causes COVID-19, and death in older patients has generated the question whether basic aging mechanisms could be implicated in such susceptibility. Mounting evidence indicates that cellular senescence, a manifestation of aging at the cellular level, contributes to the development of age-related lung pathologies and facilitates respiratory infections. Apparently, a relationship between life-threatening COVID-19 lung infection and pre-existing periodontal disease seems improbable. However, periodontal pathogens can be inoculated during endotracheal intubation and/or aspirated into the lower respiratory tract.
  • 684
  • 22 Feb 2021
Topic Review
Nanomaterials in Cancer Therapy
This entry analyzed the different roles of nanomaterials, such as contrast agent and dose enhancer, in biomedical imaging and cancer therapy. Moreover, the review discussed the underlying mechanisms of nanomaterials including physical, chemical, and biological mechanisms. Some new applications of nanomaterials as theranostic agents are explored. Through a thorough understanding of the recent advances in nanomaterial application in biomedical imaging and cancer therapy, we identified new directions for the optimization and clinical transformation of nanomaterials.
  • 684
  • 08 Feb 2021
Topic Review
ADT Influence on Bone Health
Androgen-deprivation therapy (ADT) is a systemic therapy administered for the management of advanced prostate cancer (PCa). Although ADT may improve survival, long-term use reduces bone mass density (BMD), posing an increased risk of fracture. Considering the long natural history of PCa, it is essential to preserve bone health and quality-of-life in patients on long-term ADT. As an alternative to pharmacological interventions targeted at preserving BMD, current evidence recommends lifestyle modifications, including individualized exercise and nutritional interventions. Exercise interventions include resistance training, aerobic exercise, and weight-bearing impact exercise, and have shown efficacy in preserving BMD. At the same time, it is important to take into account that PCa is a progressive and debilitating disease in which a substantial proportion of patients on long-term ADT are older individuals who harbor axial bone metastases. Smoking cessation and limited alcohol consumption are commonly recommended lifestyle measures in patients receiving ADT. Contemporary guidelines regarding lifestyle modifications vary by country, organization, and expert opinion.
  • 684
  • 18 Sep 2020
Topic Review
Microneedle Vaccine
Transdermal vaccination route using biodegradable microneedles is a rapidly progressing field of research and applications. The fear of painful needles is one of the primary reasons most people avoid getting vaccinated. Therefore, developing an alternative pain-free method of vaccination using microneedles has been a significant research area. Microneedles comprise arrays of micron-sized needles that offer a pain-free method of delivering actives across the skin. Apart from being pain-free, microneedles provide various advantages over conventional vaccination routes such as intramuscular and subcutaneous. Microneedle vaccines induce a robust immune response as the needles ranging from 50 to 900 μm in length can efficiently deliver the vaccine to the epidermis and the dermis region, which contains many Langerhans and dendritic cells. The microneedle array looks like band-aid patches and offers the advantages of avoiding cold-chain storage and self-administration flexibility. The slow release of vaccine antigens is an important advantage of using microneedles. The vaccine antigens in the microneedles can be in solution or suspension form, encapsulated in nano or microparticles, and nucleic acid-based. The use of microneedles to deliver particle-based vaccines is gaining importance because of the combined advantages of particulate vaccine and pain-free immunization. 
  • 683
  • 27 Apr 2021
Topic Review
Sentinel Node in Oral Cancer
Sentinel lymph node biopsy (SLNB) is a diagnostic staging procedure that aims to identify the first draining lymph node(s) from the primary tumor, the sentinel lymph nodes (SLN), as their histopathological status reflects the histopathological status of the rest of the nodal basin. The routine SLNB procedure consists of peritumoral injections with a technetium-99m [99mTc]-labelled radiotracer followed by lymphoscintigraphy and SPECT-CT imaging. Based on these imaging results, the identified SLNs are marked for surgical extirpation and are subjected to histopathological assessment. The routine SLNB procedure has proven to reliably stage the clinically negative neck in early-stage oral squamous cell carcinoma (OSCC). However, an infamous limitation arises in situations where SLNs are located in close vicinity of the tracer injection site. In these cases, the hotspot of the injection site can hide adjacent SLNs and hamper the discrimination between tracer injection site and SLNs (shine-through phenomenon). Therefore, technical developments are needed to bring the diagnostic accuracy of SLNB for early-stage OSCC to a higher level. 
  • 683
  • 09 Nov 2020
Topic Review
Measurable Residual Disease in AML
Relapse is still a major problem in AML because it occurs in about 60–80% of patients, even those who have previously achieved complete remission (CR), defined by the presence of ≤5% bone marrow (BM) leukemic cells. Thus, since CR is unable to predict the relapse risk, significantly more sensitive techniques aimed at identifying AML cells in BM or peripheral blood, a parameter termed measurable residual disease (MRD), have been developed. Among them, RT-qPCR, which analyses appropriate molecular markers, and multiparameter flow cytometry (MFC), which analyses aberrantly expressed antigens, have been identified as the methods of choice for MRD detection. 
  • 683
  • 22 Sep 2021
Topic Review
Citrus hystrix DC for Metabolic Disorders
Metabolic disorder, which includes hypertension, diabetes mellitus, dyslipidemia, and obesity, represents a major global health concern due to increased morbidity and mortality. It occurs due to disturbance in normal metabolic process leading to redox and energy imbalance. Metabolic disorder, which includes hypertension, diabetes mellitus, dyslipidemia, and obesity, represents a major global health concern due to increased morbidity and mortality. It occurs due to disturbance in normal metabolic process leading to redox and energy imbalance.
  • 683
  • 10 Feb 2023
Topic Review
MEG3 in Carcinogenesis of Heavy Metals
Maternally expressed gene 3 (MEG3), a long non-coding RNAs (lncRNA), functions as a tumor suppressor. MEG3 regulates cell proliferation, cell cycle, apoptosis, hypoxia, autophagy, and many other processes involved in tumor development. MEG3 is downregulated in various cancer cell lines and primary human cancers. Heavy metals, such as hexavalent chromium (Cr(VI)), arsenic, nickel, and cadmium, are confirmed human carcinogens. The exposure of cells to these metals causes a variety of cancers. Most heavy metals are toxic and carcinogenic to humans. Heavy metals are widely utilized in various industrial and agricultural products, such as paints, batteries, pigments, electronic waste, and insecticides/pesticides. Contaminated heavy metals in the environment flow into soil, lake, river, and ocean through rain and groundwater, where the metals accumulate via the circulating bio-system, resulting in high concentrations in humans. Chromium (Cr(VI)), arsenic (As), nickel (Ni), and cadmium (Cd) are listed as Group 1 human carcinogens by the International Agency for Research on Cancer (IARC). Studies have indicated that exposure to these metals disrupts cellular signaling pathways, such as damaged repair processes, reduced gene expression of tumor suppressors, and aberrant metabolism, leading to carcinogenesis.
  • 683
  • 27 Feb 2023
Topic Review
Diet, Microbiota in Brain Health
The central nervous system (CNS) is a highly energy demanding organ, as it uses about 20% of the total oxygen and glucose consumed by the body, despite representing only 2% of the total body mass. Neurons heavily rely on glucose as the main energy substrate, but in stressful conditions, other resources, such as ketone bodies and lactate, provided by glial cells, may be used. Fatty acids (FA) are poorly used by the CNS as a fuel due to a low expression of the β-oxidation enzyme machinery, an evolutionarily acquired feature necessary to limit excessive oxygen consumption and consequent reactive oxygen species generation in mitochondria generally associated with FA catabolism . Furthermore, the CNS has a limited ability to build internal energy stores, as only astrocytes have been shown to synthesize glycogen in small amounts. Cholesterol is essential for brain function. It is involved in cell maintenance, neuronal transmission, and synaptic formation. Its metabolism in the CNS relies on local de novo synthesis and catabolism, as the blood–brain barrier (BBB) blocks the passage of diet-derived cholesterol into the CNS. Thus, to maintain a constant delivery of energy substrates for neuronal activity, the CNS engages in intensive crosstalk with organs involved in metabolism, such as the gut, adipose tissue and liver, regulating several functions such as food behavior, hormonal status and commence of adaptive responses to dietary changes. Due to its metabolic setting, the maintenance of glucose homeostasis is essential for proper neuronal functioning. Receptors for insulin and insulin-like growth factor-1 (IGF-1) are present throughout the CNS, mostly concentrated on the hypothalamus and hippocampus, where local production of these hormones has also been demonstrated, especially during growth. Insulin and IGF-1 exert an important role in neuronal development and survival by stimulating synaptic plasticity and long-term potentiation, which aid in learning and memory. Interestingly, insulin modulates phosphorylation of tau protein, supporting a potential involvement of insulin metabolism in AD. Furthermore, fibroblast growth factor 21 (FGF21), a hepatocyte-derived hormone, signals protein and glucose status to the brain, allowing the refinement of food choice and metabolism according to dietary changes. On the other hand, CNS insulin sensitivity modulates adiposity and body fat accumulation. Along the brain-periphery signaling network, diet and microbiota deeply influence these communication pathways through several mechanisms.
  • 683
  • 12 Jan 2021
Topic Review
Xenopus Oocytes to Study Fully-Processed Membrane Proteins
The use of Xenopus oocytes in electrophysiological and biophysical research constitutes a long and successful story, providing major advances to the knowledge of the function and modulation of membrane proteins, mostly receptors, ion channels, and transporters. These cells are capable of correctly expressing heterologous proteins after injecting the corresponding mRNA or cDNA. The Xenopus oocyte has become an outstanding host–cell model to carry out detailed studies on the function of fully-processed foreign membrane proteins after their microtransplantation to the oocyte. 
  • 683
  • 24 Oct 2022
  • Page
  • of
  • 1352
Video Production Service