Topic Review
Fluorescence Microscopy
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology.
  • 853
  • 10 Feb 2022
Topic Review
Calcium Sources to Somatic Release of Serotonin
The soma, dendrites and axon of neurons may display calcium-dependent release of transmitters and peptides. Such release is named extrasynaptic for occurring in absence of synaptic structures. Emphasis is given to the somatic release of serotonin by the classical leech Retzius neuron, which has allowed detailed studies on the fine steps from excitation to exocytosis. Trains of action potentials induce transmembrane calcium entry through L-type channels. For action potential frequencies above 5 Hz, summation of calcium transients on individual action potentials activates the second calcium source: ryanodine receptors produce calcium-induced calcium release. The resulting calcium tsunami activates mitochondrial ATP synthesis to fuel transport of vesicles to the plasma membrane. Serotonin that is released maintains a large-scale exocytosis by activating the third calcium source: serotonin autoreceptors coupled to phospholipase C promote IP3 production. Activated IP3 receptors in peripheral endoplasmic reticulum release calcium that promotes vesicle fusion. The Swiss-clock workings of the machinery for somatic exocytosis has a striking disadvantage. The essential calcium-releasing endoplasmic reticulum near the plasma membrane hinders the vesicle transport, drastically reducing the thermodynamic efficiency of the ATP expenses and elevating the energy cost of release. 
  • 587
  • 09 Feb 2022
Topic Review
Vimentin in Oral Cancers
Oral carcinogenesis is a multistep process. As much as 5% to 85% of oral tumors can develop from potentially malignant disorders (PMD). Although the oral cavity is accessible for visual examination, the ability of current clinical or histological methods to predict the lesions that can progress to malignancy is limited.
  • 463
  • 08 Feb 2022
Topic Review
Efferent Duct Multicilia in Male Fertility
Cilia are microtubule-based hair-like organelles on the cell surface. Cilia have been implicated in various biological processes ranging from mechanosensation to fluid movement. Ciliary dysfunction leads to a plethora of human diseases, known as ciliopathies.
  • 382
  • 08 Feb 2022
Topic Review
Dynamic Cancer Cell Heterogeneity
Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches.
  • 528
  • 07 Feb 2022
Topic Review
Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma
Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against pancreatic ductal adenocarcinoma (PDAC). However, studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy. 
  • 549
  • 07 Feb 2022
Topic Review
Stem Cells
It is now well accepted that the human body contains adult stem cells or in other words post-natal stem cells that are capable of differentiating into other tissues and can regenerate or repair damaged tissues. Over the last decades, stem cell hypothesis, the development of tissue deficits due to the inability of stem cells to replenish lost cells, has become a reality. Stem cells were in a way studied by radiobiologists well before it was proposed as a hypothesis. In fact, the initial theory of the development of radiation lesions’ “target cell theory” was based on radiation-induced cell loss. Target cell theory introduced by Puck and Marcus considers cell loss as the cardinal cause of radiation induced normal tissue damage or tumour ablation. In recent years, it has been shown that the process of development of radiation damage and the damage itself starts by molecular changes long before denudation of target cells. However, one cannot deny the fact that the ultimate lesions manifest as loss of functional cells. Most bodily tissues possess a pool of clonogenic cells that are mobilised in response to assaults such as trauma or radiation. Damage to the tissue is repaired by proliferation of clonogenic or tissue specific stem cells. Sterilisation of these clonogenic cells by radiation manifests as radiation damage. In mild cases as the damage is sensed, these clonogenic cells migrate to the site of damage, and together with local surviving clonogic cells, proliferate to repair the tissue. However, in severe cases of tissue repairs, there might not be enough surviving clonogenic cells as the site of damage or sufficient number of mobilised cells to reach the site and repair the damage. Thus, the damage gets established as a result of failure of endogenous stem cells to regenerate the damaged tissue.
  • 936
  • 31 Jan 2022
Topic Review
Circular RNAs in Metabolism
Circular RNAs (circRNAs) are an emerging group of long non-coding RNAs (lncRNAs) and have attracted attention again according to the progress in high-throughput sequencing in recent years. circRNAs are genome transcripts produced from pre-messenger (m)RNA regions in a specific process called “back-splicing,” which forms covalently closed continuous loops.
  • 358
  • 30 Jan 2022
Topic Review
Phenotypical and Functional Polymorphism of Liver Resident Macrophages
Liver diseases are one of the main causes of mortality. In this regard, the development of new ways of reparative processes stimulation is relevant. Macrophages play a leading role in the regulation of liver homeostasis in physiological conditions and in pathology. In this regard, the development of new liver treatment methods is impossible without taking into account this cell population. Resident macrophages of the liver, Kupffer cells, represent a unique cell population, first of all, due to their development. Most of the liver macrophages belong to the self-sustaining macrophage cell population, whose origin is not bone marrow. In addition, Kupffer cells are involved in such processes as regulation of hepatocyte proliferation and apoptosis, remodeling of the intercellular matrix, lipid metabolism, protective function, etc. Such a broad spectrum of liver macrophage functions indicates their high functional plasticity. The Recent data on the development, phenotypic and functional plasticity, and participation in the reparative processes of liver macrophages: resident macrophages (Kupffer cells) and bone marrow-derived macrophages were summarized.
  • 544
  • 29 Jan 2022
Topic Review
Inflammatory Burden and Immunomodulative Therapeutics of Cardiovascular Diseases
Besides traditional risk factors, accumulated evidence suggested that a high inflammatory burden has emerged as a key characteristic modulating both the pathogenesis and progression of cardiovascular diseases, inclusive of atherosclerosis and myocardial infarction. To mechanistically elucidate the correlation, signalling pathways downstream to Toll-like receptors, nucleotide oligomerisation domain-like receptors, interleukins, tumour necrosis factor, and corresponding cytokines were raised as central mechanisms exerting the effect of inflammation. Other remarkable adjuvant factors include oxidative stress and secondary ferroptosis. These molecular discoveries have propelled pharmaceutical advancements. Statin was suggested to confer cardiovascular benefits not only by lowering cholesterol levels but also by attenuating inflammation. Colchicine was repurposed as an immunomodulator co-administered with coronary intervention. Novel interleukin-1β and −6 antagonists exhibited promising cardiac benefits in the recent trials as well. Moreover, manipulation of gut microbiota and associated metabolites was addressed to antagonise inflammation-related cardiovascular pathophysiology. The gut-cardio-renal axis was therein established to explain the mutual interrelationship.
  • 302
  • 29 Jan 2022
  • Page
  • of
  • 161
Video Production Service