Topic Review
Intestinal Cell Plasticity
Under constant barrage from chemical, pathogenic, and mechanical stresses, the intestinal epithelium is homeostatically replenished by a pool of Lgr5⁺ intestinal stem cells (ISCs), residing at the bottom of submucosal invaginations termed crypts. Decorated with the RSPO-receptor LGR5, which potentiates canonical Wnt/β-catenin signalling, these actively cycling cells can both self-renew and give rise to short-lived transit-amplifying cells. In turn, transit-amplifying cells undergo successive rounds of cell division and differentiation to generate the full gamut of terminally differentiated intestinal cell types tasked with performing pleiotropic absorptive, secretory, immune, and barrier functions. The self-renewal capabilities and multipotency of Lgr5⁺ ISCs are tightly controlled by instructive cues emanating from epithelial and stromal components of the ISC niche in the vicinity of the lower crypt.  The intestinal epithelium displays a remarkable ability to regenerate following demise of homeostatic Lgr5⁺ ISCs post injury. Plasticity—the ability of lineage-restricted cells to regain self-renewal capacity and multi-lineage differentiation potential in response to environmental cues—is pervasive among multiple intestinal cell populations. Reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types can all contribute to regeneration and repair through dedifferentiation and reversion to an Lgr5⁺ stem-like state. In line with the pervasive plasticity of the intestinal epithelium, accumulating evidence supports both “bottom-up” and “top-down” histogenesis of colorectal tumours whereby the cells-of-origin comprise either ISCs at the crypt base or differentiated cells at the crypt apex, respectively. 
  • 594
  • 30 Mar 2021
Topic Review
TRIM Proteins Family
TRIM (TRIpartite Motif-containing) proteins family is one of the largest groups of E3 ubiquitin ligases. Among them, interest in TRIM8 has greatly increased in recent years. TRIM8 functions are not limited to ubiquitination, and it has a role either as an oncogene or as a tumor suppressor gene, acting as a “double-edged weapon”. This is linked to its involvement in the selective regulation of three pivotal cellular signaling pathways: the p53 tumor suppressor, NF-κB and JAK-STAT pathways.
  • 412
  • 29 Mar 2021
Topic Review
Natural Killer Cell
NK cells are a group of innate immune cells that show spontaneous cytolytic activity against cells under stress, such as virus-infected cells and tumor cells. They belong to the innate lymphoid cells (ILCs) family, a recently discovered group of lymphocytes, and represent about 5–15% of human peripheral blood mononuclear cells (PBMCs). Except for directly killing target cell through the release of perforin- and granzyme-containing cytotoxic granules, NK cells can also secrete interferon (IFN-γ), tumor necrosis factor (TNF), the granulocyte–macrophage colony-stimulating factor (GM-CSF), and a panel of various immunoregulatory cytokines (IL-5, IL-10, IL-13) and chemokines (CCL-3, CCL-4, CCL-5, CXCL), by which they act as modulators of the inflammatory response. NK cells have recently been recognized for their ability to kill malignant or infected cells and maintain immune homeostasis by killing certain healthy immune cells [6]. Likewise, there is accumulating evidence that NK cells possess memory ability. This finding is in contrast to the classical definition of NK cells, by which they belong only in innate immunity cells due to their lack of RAG (Recombination-activating gene) recombinase-dependent clonal antigen receptors. New data suggest that two types of immune memory patterns can be found in NK cells. The first pattern, similarly to B and T cells, is achieved by exerting immunological memory after an encounter with various antigens and the consequent creation of generations of antigen-specific memory NK cells. Secondly, NK cells can remember inflammatory cytokines milieus that imprint long-lasting non-antigen-specific NK cell effector function. These findings of NK cells’ memory could open new horizons in their manipulation and provide us with new therapeutic targets, for example in ischemic heart disease, world's most notorious killer.
  • 659
  • 29 Mar 2021
Topic Review
Glycosylated Molluscan Hemocyanins
The molluscan hemocyanins have complex carbohydrate structures with predominant N-linked glycans. Determination of glycans and glycopeptides was performed with the most common used methods for the analysis of biomolecules, including peptides and proteins like MALDI-TOF-TOF (time of flight), LC/ESI-MS, LC-Q-trap-MS/MS nano-ESI-MS and others. A novel acidic glycan structures with specific glycosylation positions were observed in Rapana venosa, Helix lucorum, Haliotis tuberculata, e.g. hemocyanins that enable a deeper insight into the glycosylation process.
  • 555
  • 29 Mar 2021
Topic Review
Hepatocellular Carcinomas
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia.
  • 306
  • 25 Mar 2021
Topic Review
Auraptene enhances Blood brain barrier
The blood-brain barrier (BBB) is a selectively permeable barrier that divides the central nervous system (CNS) from the peripheral circulation, preventing infectious substances and immune cells from entering the CNS.
  • 880
  • 24 Mar 2021
Topic Review
Gliomas
Gliomas are a group of primary tumors of the central nervous system (CNS) originating from glial cells. It was estimated that gliomas account for nearly a quarter of all primary CNS tumors. The management of malignant gliomas poses several challenges, in part due to the heterogeneous and resistant nature of neoplasm, as well as the obstacles faced when administering high-dose radiation and chemotherapy in tissue as vulnerable as that of the CNS. These difficulties are due to the tumor’s aggressiveness and the adverse effects of radio/chemotherapy on the brain. Stem cell therapy is an exciting area of research being explored for several medical issues.
  • 551
  • 24 Mar 2021
Topic Review
Macrophage/Monocyte-Endothelial Cell Crosstalk in Liver
Inflammation is a hallmark of liver pathology, where macrophages and endothelial cells are pivotal players in promoting and sustaining disease progression. Understanding the drivers and mediators of these interactions will provide valuable information on what may contribute to liver resilience against disease. In this entry, we summarize the current knowledge on the role of macrophages and liver sinusoidal endothelial cells (LSEC) in homeostasis and liver pathology, with a particular focus on Trem-2 as a key mediator of these interactions.
  • 508
  • 24 Mar 2021
Topic Review
Drosophila Melanogaster Research
Parkinson’s disease (PD) is a complex neurodegenerative disorder that is currently incurable. As a consequence of an incomplete understanding of the etiology of the disease, therapeutic strategies mainly focus on symptomatic treatment. Even though the majority of PD cases remain idiopathic (~90%), several genes have been identified to be causative for PD, facilitating the generation of animal models that are a good alternative to study disease pathways and to increase our understanding of the underlying mechanisms of PD. Drosophila melanogaster has proven to be an excellent model in these studies.
  • 505
  • 23 Mar 2021
Topic Review
Caffeine and Sports
Several performance-enhancing or ergogenic drugs have been linked to both significant adverse cardiovascular effects and increased cardiovascular risk. Even with increased scrutiny on the governance of performance-enhancing drugs (PEDs) in professional sport and heightened awareness of the associated cardiovascular risk, there are some who are prepared to risk their use to gain competitive advantage. Caffeine is the most commonly consumed drug in the world and its ergogenic properties have been reported for decades. Thus, the removal of caffeine from the World Anti-Doping Agency (WADA) list of banned substances, in 2004, has naturally led to an exponential rise in its use amongst athletes. 
  • 693
  • 23 Mar 2021
  • Page
  • of
  • 161
ScholarVision Creations