Topic Review
Single B Cell Co-Expression Networks in Lung Cancer
In non-small cell lung cancer (NSCLC), there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. This study presents novel insights on a dysregulated B cell network that promotes proliferation in epithelial cells in NSCLC. Within this network, a nine-gene signature demonstrated prognostic and predictive indications in more than 1400 NSCLC patients using their gene and protein expression profiles in bulk tumors. Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at mRNA and protein expression levels. 
  • 561
  • 28 Jun 2022
Topic Review
Similarities and Differences of NAFLD and AATD
Non-alcoholic fatty liver disease (NAFLD) is a type of steatosis commonly associated with obesity, dyslipidemia, hypertension, and diabetes. Other diseases such as inherited alpha-1 antitrypsin deficiency (AATD) have also been related to the development of liver steatosis. The primary reasons leading to hepatic lipid deposits can be genetic and epigenetic, and the outcomes range from benign steatosis to liver failure, as well as to extrahepatic diseases. Progressive hepatocellular damage and dysregulated systemic immune responses can affect extrahepatic organs, specifically the heart and lungs. 
  • 298
  • 25 Jul 2023
Topic Review
Signaling and Transcriptional Regulation of Muscle Catabolic Genes
Cancer cachexia (CC) is a multifactorial syndrome characterized by a significant reduction in body weight that is predominantly caused by the loss of skeletal muscle and adipose tissue. Although the ill effects of cachexia are well known, the condition has been largely overlooked, in part due to its complex etiology, heterogeneity in mediators, and the involvement of diverse signaling pathways. For a long time, inflammatory factors have been the focus when developing therapeutics for the treatment of CC. Despite promising pre-clinical results, they have not yet advanced to the clinic. Developing new therapies requires a comprehensive understanding of how deregulated signaling leads to catabolic gene expression that underlies muscle wasting.
  • 366
  • 19 Sep 2022
Topic Review
SHED-Dependent Oncogenic Signaling of the PEAK3 Pseudo-Kinase
The human kinome is composed of about 50 pseudo-kinases with unclear function, because they are predicted to be catalytically inactive; however, they are shown to play an important role in cancer, similar to active kinases. Understanding how these pseudo-kinases promote tumor formation despite their catalytic inactivity is a great challenge, which may lead to innovative anti-cancer therapies. The PEAK1 and 2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism via a conserved split helical dimerization (SHED) module.
  • 406
  • 11 Jan 2022
Topic Review
SGLT2-Inhibitors on Epicardial Adipose Tissue
Sodium–glucose cotransporter-2 inhibitors (SGLT2-i) reduce adipose tissue and cardiovascular events in patients with type 2 diabetes (T2D). Accumulation of epicardial adipose tissue (EAT) is associated with increased cardio-metabolic risks and obstructive coronary disease events in patients with T2D. Studies suggest that the amount of EAT is significantly reduced in T2D patients with SGLT2-i treatment.
  • 498
  • 25 Aug 2021
Topic Review
Sexual Dimorphisms in Endothelial Cell Functions in PAD
Peripheral artery disease (PAD) is caused by blocked arteries due to atherosclerosis and/or thrombosis which reduce blood flow to the lower limbs. It results in major morbidity, including ischemic limb, claudication, and amputation, with patients also suffering a heightened risk of heart attack, stroke, and death.
  • 182
  • 24 Jan 2024
Topic Review
Sexual Dimorphism in Interstitial Lung Disease
Interstitial lung diseases (ILD) are a group of heterogeneous progressive pulmonary disorders, characterised by tissue remodelling and/or fibrotic scarring of the lung parenchyma. ILD patients experience lung function decline with progressive symptoms, poor response to treatment, reduced quality of life and high mortality. ILD can be idiopathic or associated with systemic or connective tissue diseases (CTD) but idiopathic pulmonary fibrosis (IPF) is the most common form. While IPF has a male predominance, women are affected more greatly by CTD and therefore associated ILDs. The mechanisms behind biological sex differences in these progressive lung diseases remain unclear. However, differences in environmental exposures, variable expression of X-chromosome related inflammatory genes and sex hormones play a role.
  • 379
  • 08 Feb 2023
Topic Review
Sex-Specific Differences to Ischemic Stroke
Macroautophagy (called autophagy thereafter) is a self-catabolic process where subcellular proteins, macromolecules, and organelles are sequestered within membrane-enclosed vesicles (autophagosomes) and are degraded by fusion with lysosomes (autolysosomes). Autophagy plays a role in cellular homeostasis by degrading damaged cellular contents and redistributing the constituents for other cellular processes. During times of cell stress, such as ischemia, autophagy may become dysregulated and increase injury, or conversely may increase the ability of the cell to survive under conditions with low energy substrates. There is increasing evidence that autophagy is a sex-dependent process.
  • 428
  • 04 Aug 2021
Topic Review
Sequences Involved in Glycosyltransferase ER-Golgi Trafficking
Glycosyltransferases (GTs) catalyze the glycosylation reaction between activated sugar and acceptor substrate to synthesize a wide variety of glycans. GTs are involved in metabolic processes, signal pathways, cell wall polysaccharide biosynthesis, cell development, and growth. Glycosylation mainly takes place in the endoplasmic reticulum (ER) and Golgi, where GTs and glycosidases involved in this process are distributed to different locations of these compartments and sequentially add or cleave various sugars to synthesize the final products of glycosylation. Therefore, delivery of these enzymes to the proper locations in the cell is essential and involves numerous secretory pathway components.
  • 737
  • 28 Feb 2022
Topic Review
Senescent Microglia
Microglia, far from being simply ‘brain glue’, play an important role as the brain’s resident immune cells. Their roles include phagocytic clearance of debris, pruning of synapses, and possibly even contributing to synaptic activity, being of critical importance from early development to ageing. Despite being such long-lived cells, microglia have been relatively understudied for their role in the ageing process. Reliably identifying aged microglia has proven challenging, not least due to the diversity of cell populations, and the limitations of available models, further complicated by differences between human and rodent cells.
  • 630
  • 07 May 2021
  • Page
  • of
  • 161
Video Production Service