Topic Review
2D Nanomaterials for Optical Limiting
Due to the outstanding physical, chemical, electronic, and optical properties, ultra-thin 2D materials can be potentially utilized in a wide spectrum of applications, including catalysis, energy storage, sensors, biomedicine and electronics/optoelectronics, etc. 
  • 640
  • 18 Nov 2021
Topic Review
5-Hydroxymethylfurfural (HMF)
HMF, an indispensable member of the furan-based platform compound, known as the “sleeping giant”, is a bridge between renewable biomass and industrial bulk chemicals. In recent years, the catalytic transformation of biomass to HMF has been widely studied and envisaged to be hopeful in achieving sustainable biorefineries. The synthesis of HMF from biomass requires the acid hydrolysis of biomass to hexose, and then dehydration of hexose, to obtain HMF. In the second step of dehydration, starting from ketohexose (fructose) is more efficient than starting from aldohexose (glucose).
  • 1.2K
  • 11 Oct 2021
Topic Review
Acoustic Extinguishing
In the fire-extinguishing process, in principle, one of the components in the fire tetrahedron must be removed. For example, a natural gas fire occurring on a stovetop burner can be extinguished in various ways: Eliminating the fuel source by shutting off the gas supply may be the first option. Another option is to completely cover the flame to block any oxidizer that is present, such as oxygen in the air, during combustion.
  • 3.0K
  • 25 Mar 2022
Topic Review
Activation of Biosynthetic Gene Clusters in Fungi
In the early 2000s, technological advances in genome sequencing and bioinformatics on filamentous fungi began to reveal a discrepancy between the number of biosynthetic gene clusters (BGCs) encoding the biosynthesis of fungal secondary metabolites and the actual number of identified fungal compounds from the target strain. The discovery of cryptic BGCs in microorganisms, including fungi, has spurred the development of new experimental methodologies for identifying the secondary metabolites of these clusters, which led to the realization that they have the potential to produce novel specialized metabolites, giving rise to a new field of research called genome-guided natural product discovery.
  • 249
  • 01 Jun 2023
Topic Review
Activation Persulfate by Various Iron-Based Catalysts
Advanced oxidation technology of persulfate is a new method to degrade wastewater. As the economy progresses and technology develops, increasingly more pollutants produced by the paper industry, printing and dyeing, and the chemical industry are discharged into water, causing irreversible damage to water. Methods and research directions of activation persulfate for wastewater degradation by a variety of iron-based catalysts are reviewed. This entry describes the merits and demerits of advanced oxidation techniques for activated persulfate by iron-based catalysts. In order to promote the development of related research work, the problems existing in the current application are analyzed.
  • 591
  • 24 Jan 2022
Topic Review
Adsorption Effect Modification of Lithium–Sulfur Batteries
Lithium–sulfur batteries (LSBs) have high theoretical specific capacity (1675 mAh g−1) and high energy density (2600 Wh kg−1), and the cathode sulfur is low cost, abundant, and environmentally friendly. The “shuttle effect” refers to the phenomenon that Li2Sx (4 ≤ x ≤ 8) produced by the positive electrode diffuses to the negative electrode during the charging and discharging process, and is reduced to solid Li2S2/Li2S on the negative electrode surface and attached to the negative electrode.
  • 537
  • 30 Aug 2022
Topic Review
Adsorption of Pesticides onto Clay Minerals
Adsorption of pesticides onto natural clay mineral relies on the use of adsorbents with minimal treatment beyond their preparation to provide a narrow size distribution and homoionic form by exchanging the naturally occurring interlamellar cations (in the case of smectites) by some alkaline (Na+ or K+) or alkaline earth (Ca2+or Mg2+) cation. Additional modifications include organophilization, intercalation with metal polycations and pillaring.  The adsorption capacity and strength of pesticides onto homoionic, organophilic and intercalated/pillared clay minerals depend on the chemical nature of the pesticide, surface area, and pore volume. Electrostatic interactions, hydrogen and coordinative bonds, surface complexations, and hydrophobic associations are the main interactions between pesticides and clay minerals.
  • 803
  • 29 Nov 2021
Topic Review
Advances in Printed Circuit Board Recycling
Toward improved printed circuit board recycling, recent development and research favours a strategy based on first dismantling WPCBs followed by efficiently sorting electronic components (ECs). This allows obtaining various fractions: (i) bare boards; (ii) solder; (iii) ECs sorted in elementally enriched subfractions. The goal is for each fraction, or subfraction, to have the simplest elemental composition possible, making them easier to reuse directly or recycle, and making it now possible to recover valuable metalssuch as Ti, GaBa, Ta, Nb, W, Lanthanides.
  • 487
  • 19 Apr 2022
Topic Review
Advantages and Disadvantages of Fenton Process
The Fenton reaction is primarily based on the idea of the formation of oxidizing radicals, which are created by the catalytic action of Fe2+ on the decomposition of H2O2, added in a certain amount and ratio to water, which also contains various organic substances. Oxidative radicals oxidize the present organic substances to varying degrees during the momentary period of their existence. This Fenton reaction is homogeneous because the catalyst (Fe2+ ion) is dissolved in water. However, the catalyst can also be heterogeneous. 
  • 1.6K
  • 22 Feb 2023
Topic Review
Agave By-Products
Throughout this review, we have highlighted the current potential of agave by-products as low-cost and natural materials with several applications as biofuels, materials for nanocomposites, and functional ingredients. Among the methods used for by-products processing, US and microwaves are promising and eco-friendly methods for the efficient saccharification and increased digestibility of agave, that can eventually replace chemical processing, reducing waste generation. In this regard, future studies are required concerning accessible, low-cost, and more efficient technologies as a more attractive way for the industry to make a sustainable utilization of this by-product.
  • 503
  • 08 Oct 2021
  • Page
  • of
  • 30