Topic Review
AOP Framework
This review outlines the current status and next steps for the development and use of the AOP framework in decision making regarding the safety of MNs. Opportunities and challenges toward the advancement and adoption of AOPs as part of an integrated approach to testing and assessment (IATA) of MNs are identified and specific actions proposed to advance the development, use and acceptance of the AOP framework and associated testing strategies for MN risk assessment and decision making. The intent of this review is to reflect the views of a diversity of stakeholders including experts, researchers, policymakers, regulators, risk assessors and industry representatives on the current status, needs and requirements to facilitate future use of AOPs in MN risk assessment. It incorporates the views and feedback of experts that participated in two workshops hosted as part of an Organization for Economic Cooperation and Development (OECD) Working Party on Manufactured Nanomaterials (WPMN) project titled, “Advancing AOP Development for Nanomaterial Risk Assessment and Categorization” as well as the position of several EU-funded nanosafety research consortia.
  • 1.5K
  • 09 Jul 2020
Topic Review
Appications of Natural Clinoptilolites Based on Ion Exchange
There are many natural zeolites, of which a small number, including clinoptilolite, chabazite, mordenite, erionite, ferrierite, and phillipsite offer the greatest promise for industrial applications. Natural clinoptilolites have been the subject for different modifications in order to improve their use potentialities, where the ion exchange property has been a key role for their different applications. Application of ion exchange to modify clinoptilolites, cation selection, mono- and polycationic exchange to create new functional materials for specific applications are key issues.
  • 646
  • 03 Jan 2023
Topic Review
Application and Development of Biochar in Ironmaking Production
The concept of green, low-carbon and clean energy consumption has been deeply rooted in the hearts of the people, and countries have actively advocated the use of new energy. In the face of problems such as resource shortage and environmental pollution, scholars began to explore the use of new fuels instead of coal for production. Biomass resources have the characteristics of being renewable and carbon neutral and having large output. As an energy utilization, it is helpful to promote the transformation of the energy structure in various countries. Applying it to ironmaking production is not only conducive to energy conservation and emission reduction in the ironmaking process but also can achieve efficient utilization of crop waste. 
  • 196
  • 12 Nov 2023
Topic Review
Application Fields of Silver Nanoparticles
New antiviral drugs and new preventive antiviral strategies are a target of intense scientific interest. Thanks to their peculiar properties, nanomaterials play an important role in this field, and, in particular, among metallic materials, silver nanoparticles were demonstrated to be effective against a wide range of viruses, in addition to having a strong antibacterial effect. Although the mechanism of antiviral action is not completely clarified, silver nanoparticles can directly act on viruses, and on their first steps of interaction with the host cell, depending on several factors, such as size, shape, functionalization and concentration. 
  • 785
  • 24 Mar 2023
Topic Review
Application in Wound Healing
Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. The impact of these combinations in wound healing are here examined and explored.
  • 742
  • 29 Oct 2020
Topic Review
Application of [2.2]Paracyclophane Skeleton in Modifying Dyes
The [2.2]paracyclophane (PCP) ring has attracted extensive attention due to its features of providing not only chirality and electron-donating ability but also steric hindrance, which reduces intermolecular π–π stacking interactions and thereby improves the fluorescence properties of dyes.
  • 317
  • 14 Apr 2023
Topic Review
Application of 2D MoS2-Based Nanocomposites
The 2D molybdenum disulfide (MoS2) nanosheets have unique and complementary properties to those of graphene, rendering them ideal electrode materials that could potentially lead to significant benefits in many electrochemical applications. These properties include tunable bandgaps, large surface areas, relatively high electron mobilities, and good optical and catalytic characteristics.
  • 496
  • 24 Jun 2022
Topic Review
Application of Additional Conductive Layers
Polymer composites are at increasingly used as structural materials replacing metal alloys due to their high strength-to-weight ratio and corrosion resistance. The conductivity of epoxy resin, depending on its type, ranges from 10−17 to 10−12 S/cm, so it is classified as an insulator, i.e., a material with a conductivity below 10−12 S/cm, while carbon fiber is about 6 × 102 S/cm, which allows it to be classified as a semiconductor, i.e., a material whose conductivity is between 10−12 and 103 S/cm. The EP/CF composite, on the other hand, has a conductivity of about 10−4–10−2 S/cm, that is, it also classifies as a semiconductor. The methods to improve the conductivity have been categorized into three groups: modification of the matrix with conductive fillers, modification of the composite reinforcement, and addition of layers with increased electrical conductivity to the composite. 
  • 522
  • 19 Jul 2022
Topic Review
Application of Bacteriophages in Nanotechnology
Bacteriophages (phages for short) are viruses, which have bacteria as hosts. The single phage body virion, is a colloidal particle, often possessing a dipole moment. As such, phages were used as perfectly monodisperse systems to study various physicochemical phenomena (e.g., transport or sedimentation in complex fluids), or in the material science (e.g., as scaffolds). Nevertheless, phages also execute the life cycle to multiply and produce progeny virions. Upon completion of the life cycle of phages, the host cells are usually destroyed. Natural abilities to bind to and kill bacteria were a starting point for utilizing phages in phage therapies (i.e., medical treatments that use phages to fight bacterial infections) and for bacteria detection. Numerous applications of phages became possible thanks to phage display—a method connecting the phenotype and genotype, which allows for selecting specific peptides or proteins with affinity to a given target.
  • 2.2K
  • 21 Oct 2020
Topic Review
Application of Biobased Solvents in Asymmetric Catalysis
The application of the so-called green solvents has emerged as a useful alternative to the classical organic solvents. These solvents must present some properties, such as a low vapor pressure and toxicity, high boiling point and biodegradability, and must be obtained from renewable sources.
  • 499
  • 12 Oct 2022
  • Page
  • of
  • 467
Video Production Service